AIMC Topic: Data Mining

Clear Filters Showing 21 to 30 of 1564 articles

Using Large Language Models to Automate Data Extraction From Surgical Pathology Reports: Retrospective Cohort Study.

JMIR formative research
BACKGROUND: Popularized by ChatGPT, large language models (LLMs) are poised to transform the scalability of clinical natural language processing (NLP) downstream tasks such as medical question answering (MQA) and automated data extraction from clinic...

ESM-Ezy: a deep learning strategy for the mining of novel multicopper oxidases with superior properties.

Nature communications
The UniProt database is a valuable resource for biocatalyst discovery, yet predicting enzymatic functions remains challenging, especially for low-similarity sequences. Identifying superior enzymes with enhanced catalytic properties is even harder. To...

101 Machine Learning Algorithms for Mining Esophageal Squamous Cell Carcinoma Neoantigen Prognostic Models in Single-Cell Data.

International journal of molecular sciences
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors in the digestive tract, characterized by a high recurrence rate and inadequate immunotherapy options. We analyzed mutation data of ESCC from public databases and...

TransformDDI: The Transformer-Based Joint Multi-Task Model for End-to-End Drug-Drug Interaction Extraction.

IEEE journal of biomedical and health informatics
Drug-Drug Interactions (DDI) identification is a part of the drug safety process, that focuses at avoiding potential adverse drug effects that can lead to patient health risks. With the exponential growth in published literature, it becomes increasin...

Aceso-DSAL: Discovering Clinical Evidences From Medical Literature Based on Distant Supervision and Active Learning.

IEEE journal of biomedical and health informatics
Automatic extraction of valuable, structured evidence from the exponentially growing clinical trial literature can help physicians practice evidence-based medicine quickly and accurately. However, current research on evidence extraction has been limi...

Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq.

Plant, cell & environment
Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor st...

The interpretable machine learning model for depression associated with heavy metals via EMR mining method.

Scientific reports
Limited research exists on the association between depression and heavy metal exposure. This study aims to develop an interpretable and efficient machine learning (ML) model with robust performance to identify depression linked to heavy metal exposur...

Large Language Model Applications for Health Information Extraction in Oncology: Scoping Review.

JMIR cancer
BACKGROUND: Natural language processing systems for data extraction from unstructured clinical text require expert-driven input for labeled annotations and model training. The natural language processing competency of large language models (LLM) can ...

Learning the rules of peptide self-assembly through data mining with large language models.

Science advances
Peptides are ubiquitous and important biomolecules that self-assemble into diverse structures. Although extensive research has explored the effects of chemical composition and exterior conditions on self-assembly, a systematic study consolidating the...

An automated classification pipeline for tables in pharmacokinetic literature.

Scientific reports
Pharmacokinetic (PK) models are essential for optimising drug candidate selection and dosing regimens in drug development. Preclinical and population PK models benefit from integrating prior knowledge from existing compounds. While tables in scientif...