AIMC Topic: Drug Repositioning

Clear Filters Showing 31 to 40 of 270 articles

Cubosomes as Delivery System to Repositioning Nitrofurantoin in Breast Cancer Management.

Drug design, development and therapy
PURPOSE: Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast ca...

Rapid Deployment of Antiviral Drugs Using Single-Virus Tracking and Machine Learning.

ACS nano
The outbreak of emerging acute viral diseases urgently requires the acceleration of specialized antiviral drug development, thus widely adopting phenotypic screening as a strategy for drug repurposing in antiviral research. However, traditional pheno...

Novel artificial intelligence-based identification of drug-gene-disease interaction using protein-protein interaction.

BMC bioinformatics
The evaluation of drug-gene-disease interactions is key for the identification of drugs effective against disease. However, at present, drugs that are effective against genes that are critical for disease are difficult to identify. Following a diseas...

AI-Driven Drug Discovery for Rare Diseases.

Journal of chemical information and modeling
Rare diseases (RDs), affecting 300 million people globally, present a daunting public health challenge characterized by complexity, limited treatment options, and diagnostic hurdles. Despite legislative efforts, such as the 1983 US Orphan Drug Act, m...

Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine.

European journal of medicinal chemistry
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identific...

Utilizing AI for the Identification and Validation of Novel Therapeutic Targets and Repurposed Drugs for Endometriosis.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Endometriosis affects over 190 million women globally, and effective therapies are urgently needed to address the burden of endometriosis on women's health. Using an artificial intelligence (AI)-driven target discovery platform, two unreported therap...

Deep multiple instance learning on heterogeneous graph for drug-disease association prediction.

Computers in biology and medicine
Drug repositioning offers promising prospects for accelerating drug discovery by identifying potential drug-disease associations (DDAs) for existing drugs and diseases. Previous methods have generated meta-path-augmented node or graph embeddings for ...

Artificial intelligence-based drug repurposing with electronic health record clinical corroboration: A case for ketamine as a potential treatment for amphetamine-type stimulant use disorder.

Addiction (Abingdon, England)
BACKGROUND AND AIMS: Amphetamine-type stimulants are the second-most used illicit drugs globally, yet there are no US Food and Drug Administration (FDA)-approved treatments for amphetamine-type stimulant use disorders (ATSUD). The aim of this study w...

Drugs from drugs: New chemical insights into a mature concept.

Drug discovery today
Developing new drugs from marketed ones is a well-established and successful approach in drug discovery. We offer a unified view of this field, focusing on the new chemical aspects of the involved approaches: (a) chemical transformation of the origin...

A deep drug prediction framework for viral infectious diseases using an optimizer-based ensemble of convolutional neural network: COVID-19 as a case study.

Molecular diversity
The SARS-CoV-2 outbreak highlights the persistent vulnerability of humanity to epidemics and emerging microbial threats, emphasizing the lack of time to develop disease-specific treatments. Therefore, it appears beneficial to utilize existing resourc...