Brain resection is curative for a subset of patients with drug resistant epilepsy but up to half will fail to achieve sustained seizure freedom in the long term. There is a critical need for accurate prediction tools to identify patients likely to ha...
Epilepsy is a major neurological disorder characterized by recurrent, spontaneous seizures. For patients with drug-resistant epilepsy, treatments include neurostimulation or surgical removal of the epileptogenic zone (EZ), the brain region responsibl...
Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed...
PURPOSE: Focal cortical dysplasias (FCDs) are a leading cause of drug-resistant epilepsy. Early detection and resection of FCDs have favorable prognostic implications for postoperative seizure freedom. Despite advancements in imaging methods, FCD det...
BACKGROUND: Stereoelectroencephalography (SEEG) is an effective presurgical invasive evaluation for drug-resistant epilepsies. The introduction of robotic devices provides a simplified, accurate, and safe alternative to the conventional SEEG techniqu...
Identifying the location, the spatial extent and the electrical activity of distributed brain sources in the context of epilepsy through ElectroEncephaloGraphy (EEG) recordings is a challenging task because of the highly ill-posed nature of the under...
BACKGROUND: Learning curve, training, and cost impede widespread implementation of new technology. Neurosurgical robotic technology introduces challenges to visuospatial reasoning and requires the acquisition of new fine motor skills. Studies detaili...
Electromagnetic source imaging (ESI) offers unique capability of imaging brain dynamics for studying brain functions and aiding the clinical management of brain disorders. Challenges exist in ESI due to the ill-posedness of the inverse problem and th...
OBJECTIVE: Normal interictal [ F]FDG-PET can be predicted from the corresponding T1w MRI with Generative Adversarial Networks (GANs). A technique we call SIPCOM (Subtraction Interictal PET Co-registered to MRI) can then be used to compare epilepsy pa...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.