AIMC Topic: Epigenome

Clear Filters Showing 11 to 18 of 18 articles

Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data.

Nature communications
Chromatin interaction studies can reveal how the genome is organized into spatially confined sub-compartments in the nucleus. However, accurately identifying sub-compartments from chromatin interaction data remains a challenge in computational biolog...

scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles.

Genome biology
Simultaneous measurements of transcriptomic and epigenomic profiles in the same individual cells provide an unprecedented opportunity to understand cell fates. However, effective approaches for the integrative analysis of such data are lacking. Here,...

The predictive power of profiling the DNA methylome in human health and disease.

Epigenomics
Early and accurate diagnosis significantly improves the chances of disease survival. DNA methylation (5mC), the major DNA modification in the human genome, is now recognized as a biomarker of immense clinical potential. This is due to its ability to ...

Methylomes Reveal Recent Evolutionary Changes in Populations of Two Plant Species.

Genome biology and evolution
Plant DNA methylation changes occur hundreds to thousands of times faster than DNA mutations and can be transmitted transgenerationally, making them useful for studying population-scale patterns in clonal or selfing species. However, a state-of-the-a...

A Guide to MethylationToActivity: A Deep Learning Framework That Reveals Promoter Activity Landscapes from DNA Methylomes in Individual Tumors.

Methods in molecular biology (Clifton, N.J.)
Genome-wide DNA methylomes have contributed greatly to tumor detection and subclassification. However, interpreting the biological impact of the DNA methylome at the individual gene level remains a challenge. MethylationToActivity (M2A) is a pipeline...

Merged Affinity Network Association Clustering: Joint multi-omic/clinical clustering to identify disease endotypes.

Cell reports
Although clinical and laboratory data have long been used to guide medical practice, this information is rarely integrated with multi-omic data to identify endotypes. We present Merged Affinity Network Association Clustering (MANAclust), a coding-fre...

EWAS Atlas: a curated knowledgebase of epigenome-wide association studies.

Nucleic acids research
Epigenome-Wide Association Study (EWAS) has become increasingly significant in identifying the associations between epigenetic variations and different biological traits. In this study, we develop EWAS Atlas (http://bigd.big.ac.cn/ewas), a curated kn...