AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Epilepsy

Showing 21 to 30 of 372 articles

Clear Filters

Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.

Mathematical biosciences and engineering : MBE
Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis re...

Intelligent Control to Suppress Epileptic Seizures in the Amygdala: In Silico Investigation Using a Network of Izhikevich Neurons.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Closed-loop electricalstimulation of brain structures is one of the most promising techniques to suppress epileptic seizures in drug-resistant refractory patients who are also ineligible to ablative neurosurgery. In this work, an intelligent controll...

Unsupervised learning from EEG data for epilepsy: A systematic literature review.

Artificial intelligence in medicine
BACKGROUND AND OBJECTIVES: Epilepsy is a neurological disorder characterized by recurrent epileptic seizures, whose neurophysiological signature is altered electroencephalographic (EEG) activity. The use of artificial intelligence (AI) methods on EEG...

Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy.

Epilepsy research
INTRODUCTION: To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demon...

Epilepsy surgery candidate identification with artificial intelligence: An implementation study.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
BACKGROUND: To (a) evaluate the effect of a machine learning algorithm in the identification of patients suitable for epilepsy surgery evaluation, and (b) examine the performance of a large language model (LLM) in the collation of key pieces of infor...

A hybrid optimization-enhanced 1D-ResCNN framework for epileptic spike detection in scalp EEG signals.

Scientific reports
In order to detect epileptic spikes, this paper suggests a deep learning architecture that blends 1D residual convolutional neural networks (1D-ResCNN) with a hybrid optimization strategy. The Layer-wise Adaptive Moments (LAMB) and AdamW algorithms h...

An Efficient Approach for Detection of Various Epileptic Waves Having Diverse Forms in Long Term EEG Based on Deep Learning.

Brain topography
EEG is the most powerful tool for epilepsy discharge detection in brain. Visual evaluation is hard in long term monitoring EEG data as huge amount of data needs to be inspected. Considering the fast and efficient results from deep learning networks e...

Real-Time Epileptic Seizure Prediction Method With Spatio-Temporal Information Transfer Learning.

IEEE journal of biomedical and health informatics
Despite numerous studies aimed at improving accuracy, the accurate prediction of epileptic seizures remains a challenge in clinical practice due to the high computational cost, poor real-time performance, and over-reliance on labelled data. To addres...

Hardware Optimization and Implementation of a 16-Channel Neural Tree Classifier for On-Chip Closed-Loop Neuromodulation.

IEEE transactions on biomedical circuits and systems
This work presents the development of on-chip machine learning (ML) classifiers for implantable neuromodulation system-on-chips (SoCs), aimed at detecting epileptic seizures for closed-loop neuromodulation applications. Tree-based classifiers have ga...

CrossConvPyramid: Deep Multimodal Fusion for Epileptic Magnetoencephalography Spike Detection.

IEEE journal of biomedical and health informatics
Magnetoencephalography (MEG) is a vital non-invasive tool for epilepsy analysis, as it captures high-resolution signals that reflect changes in brain activity over time. The automated detection of epileptic spikes within these signals can significant...