AIMC Topic: Epilepsy

Clear Filters Showing 21 to 30 of 392 articles

Artificial intelligence applied to epilepsy imaging: Current status and future perspectives.

Revue neurologique
In recent years, artificial intelligence (AI) has become an increasingly prominent focus of medical research, significantly impacting epileptology as well. Studies on deep learning (DL) and machine learning (ML) - the core of AI - have explored their...

Artificial intelligence applied to electroencephalography in epilepsy.

Revue neurologique
Artificial intelligence (AI) is progressively transforming all fields of medicine, promising substantial changes in clinical practice. In the context of epilepsy, electroencephalography (EEG), a technique used for over a century, has historically bee...

Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks.

Nature neuroscience
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials...

EEG detection and recognition model for epilepsy based on dual attention mechanism.

Scientific reports
In the field of clinical neurology, automated detection of epileptic seizures based on electroencephalogram (EEG) signals has the potential to significantly accelerate the diagnosis of epilepsy. This rapid and accurate diagnosis enables doctors to pr...

Machine Learning-Based localization of the epileptogenic zone using High-Frequency oscillations from SEEG: A Real-World approach.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
INTRODUCTION: Localizing the epileptogenic zone (EZ) using Stereo EEG (SEEG) is often challenging through manual analysis. Even methods based on signal analysis have limitations in identifying the EZ, particularly in patients with neocortical epileps...

Artificial intelligence (ChatGPT 4.0) vs. Human expertise for epileptic seizure and epilepsy diagnosis and classification in Adults: An exploratory study.

Epilepsy & behavior : E&B
AIMS: Artificial intelligence (AI) tools like ChatGPT hold promise for enhancing diagnostic accuracy and efficiency in clinical practice. This exploratory study evaluates ChatGPT's performance in diagnosing and classifying epileptic seizures, epileps...

Real-Time Epileptic Seizure Prediction Method With Spatio-Temporal Information Transfer Learning.

IEEE journal of biomedical and health informatics
Despite numerous studies aimed at improving accuracy, the accurate prediction of epileptic seizures remains a challenge in clinical practice due to the high computational cost, poor real-time performance, and over-reliance on labelled data. To addres...

Unlocking new frontiers in epilepsy through AI: From seizure prediction to personalized medicine.

Epilepsy & behavior : E&B
Artificial intelligence (AI) is revolutionizing epilepsy care by advancing seizure detection, enhancing diagnostic precision, and enabling personalized treatment. Machine learning and deep learning technologies improve seizure monitoring, automate EE...

An Efficient Approach for Detection of Various Epileptic Waves Having Diverse Forms in Long Term EEG Based on Deep Learning.

Brain topography
EEG is the most powerful tool for epilepsy discharge detection in brain. Visual evaluation is hard in long term monitoring EEG data as huge amount of data needs to be inspected. Considering the fast and efficient results from deep learning networks e...

Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy.

Epilepsy research
INTRODUCTION: To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demon...