In response to the urgent issues faced by current bionic undulating fin robot propulsion mechanisms, such as low working efficiency, insufficient swimming speed, ignoring thickness parameters, and the need for further improvement in biomimetic degree...
The relationship between morphology and locomotion performance in amphibious fish remains poorly understood, particularly in axial-appendage-based and appendage-based movements. To address this, we introduce Polymander, a reconfigurable robot capable...
Animal-robot interaction (ARI) is an emerging field that uses biomimetic robots to replicate biological cues, enabling controlled studies of animal behavior. This study investigates the potential for ARI systems to induce local enhancement (e.g. wher...
This study presents a new design for a multi-degree-of-freedom underdriven mechanism. The aim is to achieve efficient bionic motion of a sea turtle hydrofoil with multi-degrees-of-freedom using a single drive source. The design focuses on the kinemat...
Bionic flapping wing robots achieve flight by imitating animal flapping wings, which are safe, flexible, and efficient. Their practicality and human-machine symbiosis in narrow and complex environments are better than traditional fixed-wing or multir...
Earthworm-like robots have excellent locomotion capability in confined environments. Central pattern generator (CPG) based controllers utilize the dynamics of coupled nonlinear oscillators to spontaneously generate actuation signals for all segments,...
When the beetle lands on the target, the hind wings fold regularly to form smaller wing packages and are hidden on the ventral side of the elytra due to the interaction between the elytra and abdomen. Its complex folding pattern is attributed to the ...
Skeletal muscle is the main actuator of various families of vertebrates (mammals, fish, reptiles). It displays remarkable robustness to micro-damage, that supposedly originates both from its redundant hierarchical structure and its nervous command. A...
Efficient propulsion has been a central focus of research in the field of biomimetic underwater vehicles. Compared to the prevalent fish-like reciprocating flapping propulsion mode, the sperm-like helical propulsion mode features higher efficiency an...
This paper describes the tailless control system design of a flapping-wing micro air vehicle in a four-winged configuration, which can provide high control authority to be stable and agile in flight conditions from hovering to maneuvering flights. Th...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.