Deep learning techniques were used in ophthalmology to develop artificial intelligence (AI) models for predicting the short-term effectiveness of anti-VEGF therapy in patients with macular edema secondary to branch retinal vein occlusion (BRVO-ME). 1...
PURPOSE: To quantify morphological changes of the photoreceptors (PRs) and retinal pigment epithelium (RPE) layers under pegcetacoplan therapy in geographic atrophy (GA) using deep learning-based analysis of OCT images.
PURPOSE: To explore the contributions of fundus autofluorescence (FAF) topographic imaging features to the performance of convolutional neural network-based deep learning (DL) algorithms in predicting geographic atrophy (GA) growth rate.
PURPOSE OF REVIEW: This review aims to address the recent advances of artificial intelligence (AI) in the context of clinical management of geographic atrophy (GA), a vision-impairing late-stage manifestation of age-related macular degeneration (AMD)...
OBJECTIVE: To assess the feasibility of using non-mydriatic fundus photography in conjunction with an artificial intelligence (AI) reading platform for large-scale screening of diabetic retinopathy (DR).
PURPOSE: To investigate associations between quantitative vascular measurements derived from intravenous fluorescein angiography (IVFA) and baseline characteristics on optical coherence tomography (OCT) in neovascular age-related macular degeneration...
BACKGROUND/AIMS: To design a deep learning (DL) model for the detection of glaucoma progression with a longitudinal series of macular optical coherence tomography angiography (OCTA) images.