AIMC Topic: Genome, Bacterial

Clear Filters Showing 31 to 40 of 92 articles

DeLUCS: Deep learning for unsupervised clustering of DNA sequences.

PloS one
We present a novel Deep Learning method for the Unsupervised Clustering of DNA Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or (taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations (FCGR) of prim...

Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction.

International journal of molecular sciences
The prediction of antimicrobial resistance (AMR) based on genomic information can improve patient outcomes. Genetic mechanisms have been shown to explain AMR with accuracies in line with standard microbiology laboratory testing. To translate genetic ...

GenTB: A user-friendly genome-based predictor for tuberculosis resistance powered by machine learning.

Genome medicine
BACKGROUND: Multidrug-resistant Mycobacterium tuberculosis (Mtb) is a significant global public health threat. Genotypic resistance prediction from Mtb DNA sequences offers an alternative to laboratory-based drug-susceptibility testing. User-friendly...

Application of the random forest algorithm to Streptococcus pyogenes response regulator allele variation: from machine learning to evolutionary models.

Scientific reports
Group A Streptococcus (GAS) is a globally significant bacterial pathogen. The GAS genotyping gold standard characterises the nucleotide variation of emm, which encodes a surface-exposed protein that is recombinogenic and under immune-based selection ...

Detecting operons in bacterial genomes via visual representation learning.

Scientific reports
Contiguous genes in prokaryotes are often arranged into operons. Detecting operons plays a critical role in inferring gene functionality and regulatory networks. Human experts annotate operons by visually inspecting gene neighborhoods across pileups ...

Forest and Trees: Exploring Bacterial Virulence with Genome-wide Association Studies and Machine Learning.

Trends in microbiology
The advent of inexpensive and rapid sequencing technologies has allowed bacterial whole-genome sequences to be generated at an unprecedented pace. This wealth of information has revealed an unanticipated degree of strain-to-strain genetic diversity w...

Predicting antimicrobial resistance using conserved genes.

PLoS computational biology
A growing number of studies are using machine learning models to accurately predict antimicrobial resistance (AMR) phenotypes from bacterial sequence data. Although these studies are showing promise, the models are typically trained using features de...

Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life.

BMC bioinformatics
BACKGROUND: It is a computational challenge for current metagenomic classifiers to keep up with the pace of training data generated from genome sequencing projects, such as the exponentially-growing NCBI RefSeq bacterial genome database. When new ref...

A Genome-Based Model to Predict the Virulence of Pseudomonas aeruginosa Isolates.

mBio
Variation in the genome of , an important pathogen, can have dramatic impacts on the bacterium's ability to cause disease. We therefore asked whether it was possible to predict the virulence of isolates based on their genomic content. We applied a m...

Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping.

Nature communications
Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology. Machine learning may address this, but requires large datasets linking GREs to their quantitative function. However, experimental methods to generate such d...