AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Genome, Bacterial

Showing 31 to 40 of 88 articles

Clear Filters

DeLUCS: Deep learning for unsupervised clustering of DNA sequences.

PloS one
We present a novel Deep Learning method for the Unsupervised Clustering of DNA Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or (taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations (FCGR) of prim...

Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN.

Scientific reports
Effective and timely antibiotic treatment depends on accurate and rapid in silico antimicrobial-resistant (AMR) predictions. Existing statistical rule-based Mycobacterium tuberculosis (MTB) drug resistance prediction methods using bacterial genomic s...

Phenotype-Based Threat Assessment.

Proceedings of the National Academy of Sciences of the United States of America
Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pa...

Deep learning of a bacterial and archaeal universal language of life enables transfer learning and illuminates microbial dark matter.

Nature communications
The majority of microbial genomes have yet to be cultured, and most proteins identified in microbial genomes or environmental sequences cannot be functionally annotated. As a result, current computational approaches to describe microbial systems rely...

Deep Learning to Predict the Biosynthetic Gene Clusters in Bacterial Genomes.

Journal of molecular biology
Biosynthetic gene clusters (BGCs) in bacterial genomes code for important small molecules and secondary metabolites. Based on the validated BGCs and the corresponding sequences of protein family domains (Pfams), Pfam functions and clan information, w...

Operon Finder: A Deep Learning-based Web Server for Accurate Prediction of Prokaryotic Operons.

Journal of molecular biology
Operons are groups of consecutive genes that transcribe together under the regulation of a common promoter. They influence protein regulation and various physiological pathways, making their accurate detection desirable. The detection of operons thro...

NanoDeep: a deep learning framework for nanopore adaptive sampling on microbial sequencing.

Briefings in bioinformatics
Nanopore sequencers can enrich or deplete the targeted DNA molecules in a library by reversing the voltage across individual nanopores. However, it requires substantial computational resources to achieve rapid operations in parallel at read-time sequ...

Large-scale genomic survey with deep learning-based method reveals strain-level phage specificity determinants.

GigaScience
BACKGROUND: Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations prese...

Predicting S. aureus antimicrobial resistance with interpretable genomic space maps.

Molecular informatics
Increasing antimicrobial resistance (AMR) represents a global healthcare threat. To decrease the spread of AMR and associated mortality, methods for rapid selection of optimal antibiotic treatment are urgently needed. Machine learning (ML) models bas...

Protein function annotation and virulence factor identification of Klebsiella pneumoniae genome by multiple machine learning models.

Microbial pathogenesis
Klebsiella pneumoniae is a type of Gram-negative bacterium which can cause a range of infections in human. In recent years, an increasing number of strains of K. pneumoniae resistant to multiple antibiotics have emerged, posing a significant threat t...