AIMC Topic: Geographic Atrophy

Clear Filters Showing 11 to 20 of 39 articles

Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.

Ophthalmology. Retina
OBJECTIVE: To develop deep learning models for annualized geographic atrophy (GA) growth rate prediction using fundus autofluorescence (FAF) images and spectral-domain OCT volumes from baseline visits, which can be used for prognostic covariate adjus...

A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT.

Ophthalmology. Retina
PURPOSE: To present a deep learning algorithm for segmentation of geographic atrophy (GA) using en face swept-source OCT (SS-OCT) images that is accurate and reproducible for the assessment of GA growth over time.

Predicting Topographic Disease Progression and Treatment Response of Pegcetacoplan in Geographic Atrophy Quantified by Deep Learning.

Ophthalmology. Retina
PURPOSE: To identify disease activity and effects of intravitreal pegcetacoplan treatment on the topographic progression of geographic atrophy (GA) secondary to age-related macular degeneration quantified in spectral-domain OCT (SD-OCT) by automated ...

Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.

The Lancet. Digital health
BACKGROUND: Geographic atrophy is a major vision-threatening manifestation of age-related macular degeneration, one of the leading causes of blindness globally. Geographic atrophy has no proven treatment or method for easy detection. Rapid, reliable,...

Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging.

Computers in biology and medicine
PURPOSE: To automatically classify retinal atrophy according to its etiology, using fundus autofluorescence (FAF) images, using a deep learning model.

MS-CAM: Multi-Scale Class Activation Maps for Weakly-Supervised Segmentation of Geographic Atrophy Lesions in SD-OCT Images.

IEEE journal of biomedical and health informatics
As one of the most critical characteristics in advanced stage of non-exudative Age-related Macular Degeneration (AMD), Geographic Atrophy (GA) is one of the significant causes of sustained visual acuity loss. Automatic localization of retinal regions...

Predicting conversion to wet age-related macular degeneration using deep learning.

Nature medicine
Progression to exudative 'wet' age-related macular degeneration (exAMD) is a major cause of visual deterioration. In patients diagnosed with exAMD in one eye, we introduce an artificial intelligence (AI) system to predict progression to exAMD in the ...

Determinants of Cone and Rod Functions in Geographic Atrophy: AI-Based Structure-Function Correlation.

American journal of ophthalmology
PURPOSE: To investigate the association between retinal microstructure and cone and rod function in geographic atrophy (GA) secondary to age-related macular degeneration (AMD) by using artificial intelligence (AI) algorithms.