A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is uns...
PURPOSE: While neural networks gain popularity in medical research, attempts to make the decisions of a model explainable are often only made towards the end of the development process once a high predictive accuracy has been achieved.
Glioblastoma is a heterogeneous lethal disease, regulated by a stem-cell hierarchy and the neurotransmitter microenvironment. The identification of chemotherapies targeting individual cancer stem cells is a clinical need. A robotic workstation was ...
Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
May 11, 2020
BACKGROUND: Magnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use o...
BACKGROUND: Automated brain tumor segmentation methods are computational algorithms that yield tumor delineation from, in this case, multimodal magnetic resonance imaging (MRI). We present an automated segmentation method and its results for resectio...
In managing a patient with glioblastoma (GBM), a surgeon must carefully consider whether sufficient tumour can be removed so that the patient can enjoy the benefits of decompression and cytoreduction, without impacting on the patient's neurological s...
BACKGROUND: Imaging of glioblastoma patients after maximal safe resection and chemoradiation commonly demonstrates new enhancements that raise concerns about tumor progression. However, in 30% to 50% of patients, these enhancements primarily represen...
OBJECTIVES: To establish a quantitative MR model that uses clinically relevant features of tumor location and tumor volume to differentiate lower grade glioma (LRGG, grades II and III) and glioblastoma (GBM, grade IV).
PURPOSE: Pseudoprogression (PsP) occurs in 20-30% of patients with glioblastoma multiforme (GBM) after receiving the standard treatment. PsP exhibits similarities in shape and intensity to the true tumor progression (TTP) of GBM on the follow-up magn...
Glioblastoma (GBM) is the most common and deadly malignant brain tumor. For personalized treatment, an accurate pre-operative prognosis for GBM patients is highly desired. Recently, many machine learning-based methods have been adopted to predict ove...