AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Graph Neural Networks

Showing 31 to 40 of 99 articles

Clear Filters

Detection of pre-mRNA involved in abnormal splicing using Graph Neural Network and Nearest Correlation Method.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
BACKGROUND: DNA is the building block of genetic information, and is composed of alternating sequences of exons with genetic information and introns without no genetic information. DNA is damaged by normal metabolic activities and environmental facto...

Leveraging Graph Neural Networks for MIC Prediction in Antimicrobial Resistance Studies.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Antimicrobial resistance (AMR) poses a significant challenge in healthcare and public health, with organisms such as nontyphoidal Salmonella leading the way due to their escalating resistance to antimicrobial agents. This situation severely complicat...

Novel Alzheimer's Disease Stating Based on Comorbidities-Informed Graph Neural Networks.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Alzheimer's Disease (AD), the most prevalent form of dementia, requires early prediction for timely intervention. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), our study employs Graph Neural Networks (GNNs) for multi-cl...

Decoding Visual Perception from EEG Using Explainable Graph Neural Network.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Brain decoding is an emerging area in the fields of neuroscience and machine learning. The goal of decoding is to utilize measured brain activity to understand the thoughts or sensations of individuals. In the fields of computer vision and machine le...

A Graph Neural Network Model for Real-Time Gesture Recognition Based on sEMG Signals.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
For seemless control of advanced hand prostheses and augmented reality, accurate and immediate hand gestures recognition is essential. Surface electromyography (sEMG) signals obtained from the forearm are commonly employed for this purpose. In this p...

Multi-task Learning Graph Neural Networks for Cancer Prognosis Prediction with Genomic Data.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Providing robust prognosis predictions for cancers with limited data samples remains a challenge for precision oncology. In this study, we propose a novel approach that combines multi-task learning (MTL) and graph neural networks (GNNs) to address th...

A small-scale data driven and graph neural network based toxicity prediction method of compounds.

Computational biology and chemistry
Toxicity prediction is crucial in drug discovery, helping identify safe compounds and reduce development risks. However, the lack of known toxicity data for most compounds is a major challenge. Recently, data-driven models have gained attention as a ...

FEGGNN: Feature-Enhanced Gated Graph Neural Network for robust few-shot skin disease classification.

Computers in biology and medicine
Accurate and timely classification of skin diseases is essential for effective dermatological diagnosis. However, the limited availability of annotated images, particularly for rare or novel conditions, poses a significant challenge. Although few-sho...

Leveraging graph neural networks and gate recurrent units for accurate and transparent prediction of baseball pitching speed.

Scientific reports
Long short-term memory (LSTM) networks are widely used in biomechanical data analysis but have the significant limitations in interpretability and decision transparency. Combining graph neural networks (GNN) with gate recurrent units (GRU) may offer ...

scHeteroNet: A Heterophily-Aware Graph Neural Network for Accurate Cell Type Annotation and Novel Cell Detection.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Single-cell RNA sequencing (scRNA-seq) has unveiled extensive cellular heterogeneity, yet precise cell type annotation and the identification of novel cell populations remain significant challenges. scHeteroNet, a novel graph neural network framework...