In recent years, a variety of deep learning networks for cardiac MRI (CMR) segmentation have been developed and analyzed. However, nearly all of them are focused on cine CMR under breathold. In this work, accuracy of deep learning methods is assessed...
Objective Although magnetic resonance imaging (MRI) is the gold standard for evaluating abnormal myocardial fibrosis and extracellular volume (ECV) of the left ventricular myocardium (LVM), a similar evaluation has recently become possible using comp...
In the human cardiovascular system (CVS), the interaction between the left and right ventricles of the heart is influenced by the septum and the pericardium. Computational models of the CVS can capture this interaction, but this often involves approx...
OBJECTIVES: To investigate the usefulness of machine learning (ML) models using pretreatment F-FDG-PET-based radiomic features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS).
The crucial pathophysiological and prognostic roles of the right ventricle in various diseases have been well-established. Nonetheless, conventional cardiovascular imaging modalities are frequently associated with intrinsic limitations when evaluatin...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
38640619
Cardiovascular MRI (CMRI) is a non-invasive imaging technique adopted for assessing the blood circulatory system's structure and function. Precise image segmentation is required to measure cardiac parameters and diagnose abnormalities through CMRI da...
BACKGROUND AND AIMS: Early identification of cardiac structural abnormalities indicative of heart failure is crucial to improving patient outcomes. Chest X-rays (CXRs) are routinely conducted on a broad population of patients, presenting an opportuni...