AIMC Topic: Hip Fractures

Clear Filters Showing 11 to 20 of 66 articles

Machine Learning-Based Prediction of Postoperative Pneumonia Among Super-Aged Patients With Hip Fracture.

Clinical interventions in aging
BACKGROUND: Hip fractures have become a significant health concern, particularly among super-aged patients, who were at a high risk of postoperative pneumonia due to their frailty and the presence of multiple comorbidities. This study aims to establi...

Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.

Academic radiology
RATIONALE AND OBJECTIVES: This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.

Deep learning for automated hip fracture detection and classification : achieving superior accuracy.

The bone & joint journal
AIMS: The aim of this study was to develop and evaluate a deep learning-based model for classification of hip fractures to enhance diagnostic accuracy.

Patch-based feature mapping with generative adversarial networks for auxiliary hip fracture detection.

Computers in biology and medicine
BACKGROUND: Hip fractures are a significant public health issue, particularly among the elderly population. Pelvic radiographs (PXRs) play a crucial role in diagnosing hip fractures and are commonly used for their evaluation. Previous research has de...

An explainable and supervised machine learning model for prediction of red blood cell transfusion in patients during hip fracture surgery.

BMC anesthesiology
AIM: The study aimed to develop a predictive model with machine learning (ML) algorithm, to predict and manage the need for red blood cell (RBC) transfusion during hip fracture surgery.

Machine Learning Algorithms Exceed Comorbidity Indices in Prediction of Short-Term Complications After Hip Fracture Surgery.

The Journal of the American Academy of Orthopaedic Surgeons
BACKGROUND: Hip fractures are among the most morbid acute orthopaedic injuries often due to accompanying patient frailty. The purpose of this study was to determine the reliability of assessing surgical risk after hip fracture through machine learnin...

Predictive modeling of preoperative acute heart failure in older adults with hypertension: a dual perspective of SHAP values and interaction analysis.

BMC medical informatics and decision making
BACKGROUND: In older adults with hypertension, hip fractures accompanied by preoperative acute heart failure significantly elevate surgical risks and adverse outcomes, necessitating timely identification and management to improve patient outcomes.

Interpretable prediction of acute ischemic stroke after hip fracture in patients 65 years and older based on machine learning and SHAP.

Archives of gerontology and geriatrics
BACKGROUND: Hip fracture and acute ischemic stroke (AIS) are prevalent conditions among the older population. The prognosis for older patients who experience AIS subsequent to hip fracture is frequently unfavorable.

Comparison between artificial intelligence solution and radiologist for the detection of pelvic, hip and extremity fractures on radiographs in adult using CT as standard of reference.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to compare the diagnostic performance of an artificial intelligence (AI) solution for the detection of fractures of pelvic, proximal femur or extremity fractures in adults with radiologist interpretation of radi...

Establishment and validation of an artificial intelligence web application for predicting postoperative in-hospital mortality in patients with hip fracture: a national cohort study of 52 707 cases.

International journal of surgery (London, England)
BACKGROUND: In-hospital mortality following hip fractures is a significant concern, and accurate prediction of this outcome is crucial for appropriate clinical management. Nonetheless, there is a lack of effective prediction tools in clinical practic...