In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is ...
Different types of breast cancer are affecting lives of women across the world. Common types include Ductal carcinoma in situ (DCIS), Invasive ductal carcinoma (IDC), Tubular carcinoma, Medullary carcinoma, and Invasive lobular carcinoma (ILC). While...
Automated left ventricular (LV) segmentation is crucial for efficient quantification of cardiac function and morphology to aid subsequent management of cardiac pathologies. In this paper, we parameterize the complete (all short axis slices and phases...
International journal of computer assisted radiology and surgery
Apr 10, 2017
PURPOSE: Improved surgical outcome and patient safety in the operating theatre are constant challenges. We hypothesise that a framework that collects and utilises information -especially perceptually enabled ones-from multiple sources, could help to ...
BACKGROUND: Celiac disease is one of the most common diseases in the world. Capsule endoscopy is an alternative way to visualize the entire small intestine without invasiveness to the patient. It is useful to characterize celiac disease, but hours ar...
Computational and mathematical methods in medicine
Apr 3, 2017
The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet trans...
PURPOSE: Diabetic retinopathy (DR) is one of the leading causes of preventable blindness globally. Performing retinal screening examinations on all diabetic patients is an unmet need, and there are many undiagnosed and untreated cases of DR. The obje...
Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning ...
IEEE journal of biomedical and health informatics
Mar 21, 2017
We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in im...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.