AIMC Topic: Image Processing, Computer-Assisted

Clear Filters Showing 291 to 300 of 9578 articles

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Computer methods and programs in biomedicine
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys ...

Efficient hybrid heuristic adopted deep learning framework for diagnosing breast cancer using thermography images.

Scientific reports
The most dangerous form of cancer is breast cancer. This disease is life-threatening because of its aggressive nature and high death rates. Therefore, early discovery increases the patient's survival. Mammography has recently been recommended as diag...

Lightweight Multi-Stage Aggregation Transformer for robust medical image segmentation.

Medical image analysis
Capturing rich multi-scale features is essential to address complex variations in medical image segmentation. Multiple hybrid networks have been developed to integrate the complementary benefits of convolutional neural networks (CNN) and Transformers...

U-shaped network combining dual-stream fusion mamba and redesigned multilayer perceptron for myocardial pathology segmentation.

Medical physics
BACKGROUND: Cardiac magnetic resonance imaging (CMR) provides critical pathological information, such as scars and edema, which are vital for diagnosing myocardial infarction (MI). However, due to the limited pathological information in single-sequen...

Smartphone-Based SPAD Value Estimation for Jujube Leaves Using Machine Learning: A Study on RGB Feature Extraction and Hybrid Modeling.

Sensors (Basel, Switzerland)
Chlorophyll content in date leaves is critical for fruit quality and yield. Traditional detection methods are usually complex and expensive. This study proposes a rapid detection method for chlorophyll content using smartphone images and machine lear...

Feasibility of U-Net model for cerebral arteries segmentation with low-dose computed tomography angiographic images with pre-processing methods.

Scientific reports
Subtraction computed tomography angiography (sCTA) can effectively separate enhanced cerebral arteries from similar signal intensity and proximity (i.e., vertebrae and skull). However, sCTA is not considered mainstream because of the high radiation d...

Identification of cancerous tissues based on residual neural network.

Scientific reports
The identification of cancerous tissues remains challenging due to the complexity of experimental methods and low identification accuracy rates. Therefore, this paper proposes a rapid identification method. We introduce a new theoretical transmission...

VMKLA-UNet: vision Mamba with KAN linear attention U-Net.

Scientific reports
In the domain of medical image segmentation, while convolutional neural networks (CNNs) and Transformer-based architectures have attained notable success, they continue to face substantial challenges. CNNs are often limited in their ability to captur...

Sensitivity of a deep-learning-based breast cancer risk prediction model.

Physics in medicine and biology
When it comes to the implementation of deep-learning based breast cancer risk (BCR) prediction models in clinical settings, it is important to be aware that these models could be sensitive to various factors, especially those arising from the acquisi...

Comparison of CNNs and Transformer Models in Diagnosing Bone Metastases in Bone Scans Using Grad-CAM.

Clinical nuclear medicine
PURPOSE: Convolutional neural networks (CNNs) have been studied for detecting bone metastases on bone scans; however, the application of ConvNeXt and transformer models has not yet been explored. This study aims to evaluate the performance of various...