AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intensive Care Units

Showing 21 to 30 of 603 articles

Clear Filters

Enhanced machine learning predictive modeling for delirium in elderly ICU patients with COPD and respiratory failure: A retrospective study based on MIMIC-IV.

PloS one
BACKGROUND AND OBJECTIVE: Elderly patients with Chronic obstructive pulmonary disease (COPD) and respiratory failure admitted to the intensive care unit (ICU) have a poor prognosis, and the occurrence of delirium further worsens outcomes and increase...

[Predicting Intensive Care Unit Mortality in Patients With Heart Failure Combined With Acute Kidney Injury Using an Interpretable Machine Learning Model: A Retrospective Cohort Study].

Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition
OBJECTIVE: Heart failure (HF) complicated by acute kidney injury (AKI) significantly impacts patient outcomes, and it is crucial to make early predictions of short-term mortality. This study is focused on developing an interpretable machine learning ...

Interpretable machine learning model for early morbidity risk prediction in patients with sepsis-induced coagulopathy: a multi-center study.

Frontiers in immunology
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.

Developing a high-performance AI model for spontaneous intracerebral hemorrhage mortality prediction using machine learning in ICU settings.

BMC medical informatics and decision making
BACKGROUND: Spontaneous intracerebral hemorrhage (SICH) is a devastating condition that significantly contributes to high mortality rates. This study aims to construct a mortality prediction model for patients with SICH using four various artificial ...

Machine learning prediction models for multidrug-resistant organism infections in ICU ventilator-associated pneumonia patients: Analysis using the MIMIC-IV database.

Computers in biology and medicine
OBJECTIVE: This study aims to construct and compare four machine learning models using the MIMIC-IV database to identify high-risk factors for multidrug-resistant organism (MDRO) infection in Ventilator-associated pneumonia (VAP) patients.

Clinicians' Perceptions and Potential Applications of Robotics for Task Automation in Critical Care: Qualitative Study.

Journal of medical Internet research
BACKGROUND: Interest in integrating robotics within intensive care units (ICUs) has been propelled by technological advancements, workforce challenges, and heightened clinical demands, including during the COVID-19 pandemic. The integration of roboti...

Constructing an early warning model for elderly sepsis patients based on machine learning.

Scientific reports
Sepsis is a serious threat to human life. Early prediction of high-risk populations for sepsis is necessary especially in elderly patients. Artificial intelligence shows benefits in early warning. The aim of the study was to construct an early machin...

Multicenter Development and Prospective Validation of eCARTv5: A Gradient-Boosted Machine-Learning Early Warning Score.

Critical care explorations
BACKGROUND: Early detection of clinical deterioration using machine-learning early warning scores may improve outcomes. However, most implemented scores were developed using logistic regression, only underwent retrospective validation, and were not t...

Eye movement detection using electrooculography and machine learning in cardiac arrest patients.

Resuscitation
AIM: To train a machine learning algorithm to identify eye movement from electrooculography (EOG) in cardiac arrest (CA) patients. Neuroprognostication of comatose post-CA patients is challenging, requiring novel biomarkers to guide decision making. ...

Explainable SHAP-XGBoost models for pressure injuries among patients requiring with mechanical ventilation in intensive care unit.

Scientific reports
pressure injuries are significant concern for ICU patients on mechanical ventilation. Early prediction is crucial for enhancing patient outcomes and reducing healthcare costs. This study aims to develop a predictive model using machine learning techn...