AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ischemic Stroke

Showing 31 to 40 of 205 articles

Clear Filters

Influence of renal function on blood pressure control and outcome in thrombolyzed patients after acute ischemic stroke: analysis of the ENCHANTED trial.

Frontiers in endocrinology
BACKGROUND: The effect of renal impairment in patients who receive intravenous thrombolysis for acute ischemic stroke (AIS) is unclear. We aimed to determine the associations of renal impairment and clinical outcomes and any modification of the effec...

Machine Learning-Based Model for Prediction of Post-Stroke Cognitive Impairment in Acute Ischemic Stroke: A Cross-Sectional Study.

Neurology India
BACKGROUND AND OBJECTIVE: Early identification of post-stroke cognitive impairment (PSCI) is an important challenge for clinicians. In this study, we aimed to build a machine learning-based prediction model for PSCI and uncover potential risk factors...

Predictive modelling of hospital-acquired infection in acute ischemic stroke using machine learning.

Scientific reports
Hospital-acquired infections (HAIs) are serious complication for patients with acute ischemic stroke (AIS), often resulting in poor functional outcomes. However, no existing model can specifically predict HAI in AIS patients. Therefore, we employed t...

A wrapper method for finding optimal subset of multimodal Magnetic Resonance Imaging sequences for ischemic stroke lesion segmentation.

Computers in biology and medicine
Multimodal data, while being information-rich, contains complementary as well as redundant information. Depending on the target problem some modalities are more informative and thus relevant for decision-making. Identifying the optimal subset of moda...

Screening prediction models using artificial intelligence for moderate-to-severe obstructive sleep apnea in patients with acute ischemic stroke.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Obstructive sleep apnea (OSA) is common after stroke. Still, routine screening of OSA with polysomnography (PSG) is often unfeasible in clinical practice, primarily because of how limited resources are and the physical condition of patien...

Using clinical data to reclassify ESUS patients to large artery atherosclerotic or cardioembolic stroke mechanisms.

Journal of neurology
PURPOSE: Embolic stroke of unidentified source (ESUS) represents 10-25% of all ischemic strokes. Our goal was to determine whether ESUS could be reclassified to cardioembolic (CE) or large-artery atherosclerosis (LAA) with machine learning (ML) using...

Prediction of stroke-associated hospital-acquired pneumonia: Machine learning approach.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Stroke-associated Hospital Acquired Pneumonia (HAP) significantly impacts patient outcomes. This study explores the utility of machine learning models in predicting HAP in stroke patients, leveraging national registry data and SHapley Add...

Smartphone pupillometry with machine learning differentiates ischemic from hemorrhagic stroke: A pilot study.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECTIVES: Similarities between acute ischemic and hemorrhagic stroke make diagnosis and triage challenging. We studied a smartphone-based quantitative pupillometer for differentiation of acute ischemic and hemorrhagic stroke.

Machine learning and deep learning algorithms in stroke medicine: a systematic review of hemorrhagic transformation prediction models.

Journal of neurology
BACKGROUND: Acute ischemic stroke (AIS) is a major cause of morbidity and mortality, with hemorrhagic transformation (HT) further worsening outcomes. Traditional scoring systems have limited predictive accuracy for HT in AIS. Recent research has expl...

Residual risk prediction in anticoagulated patients with atrial fibrillation using machine learning: A report from the GLORIA-AF registry phase II/III.

European journal of clinical investigation
BACKGROUND: Although oral anticoagulation decreases the risk of thromboembolism in patients with atrial fibrillation (AF), a residual risk of thrombotic events still exists. This study aimed to construct machine learning (ML) models to predict the re...