AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Likelihood Functions

Showing 31 to 40 of 86 articles

Clear Filters

Logistic regression with image covariates via the combination of L1 and Sobolev regularizations.

PloS one
The use of image covariates to build a classification model has lots of impact in various fields, such as computer science, medicine, and so on. The aim of this paper is to develop an estimation method for logistic regression model with image covaria...

Chances and challenges of machine learning-based disease classification in genetic association studies illustrated on age-related macular degeneration.

Genetic epidemiology
Imaging technology and machine learning algorithms for disease classification set the stage for high-throughput phenotyping and promising new avenues for genome-wide association studies (GWAS). Despite emerging algorithms, there has been no successfu...

Marine animal tracking with classical and emerging localization algorithms.

Science robotics
Localization algorithms applied to acoustic tags for tracking marine animals can also be used to localize marine robots.

Materials In Paintings (MIP): An interdisciplinary dataset for perception, art history, and computer vision.

PloS one
In this paper, we capture and explore the painterly depictions of materials to enable the study of depiction and perception of materials through the artists' eye. We annotated a dataset of 19k paintings with 200k+ bounding boxes from which polygon se...

A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis.

Psychometrika
Marginal maximum likelihood (MML) estimation is the preferred approach to fitting item response theory models in psychometrics due to the MML estimator's consistency, normality, and efficiency as the sample size tends to infinity. However, state-of-t...

A statistical framework for non-negative matrix factorization based on generalized dual divergence.

Neural networks : the official journal of the International Neural Network Society
A statistical framework for non-negative matrix factorization based on generalized dual Kullback-Leibler divergence, which includes members of the exponential family of models, is proposed. A family of algorithms is developed using this framework, in...

Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.

eLife
In cognitive neuroscience, computational modeling can formally adjudicate between theories and affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of plausible generative models considered is dramatically limited by ...

Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Fast magnetic resonance imaging (MRI) is crucial for clinical applications that can alleviate motion artefacts and increase patient throughput. -space undersampling is an obvious approach to accelerate MR acquisition. However, undersampling of -space...

Prediction of Incident Atrial Fibrillation in Chronic Kidney Disease: The Chronic Renal Insufficiency Cohort Study.

Clinical journal of the American Society of Nephrology : CJASN
BACKGROUND AND OBJECTIVES: Atrial fibrillation (AF) is common in CKD and associated with poor kidney and cardiovascular outcomes. Prediction models developed using novel methods may be useful to identify patients with CKD at highest risk of incident ...