AIMC Topic: Machine Learning

Clear Filters Showing 1181 to 1190 of 32557 articles

A novel Swin transformer based framework for speech recognition for dysarthria.

Scientific reports
Dysarthria frequently occurs in individuals with disorders such as stroke, Parkinson's disease, cerebral palsy, and other neurological disorders. Well-timed detection and management of dysarthria in these patients is imperative for efficiently handli...

Predicting Coronary Heart Disease Using Data Mining and Machine Learning Solutions.

Anais da Academia Brasileira de Ciencias
This research focuses on predicting cardiovascular disease using machine learning classification strategies. The study presents a unique approach by integrating multiple machine learning techniques, leveraging the strengths of Random Forest and Gradi...

High-Sensitivity Detection of C-Peptide Biomarker for Diabetes by Solid-State Nanopore Using Machine Learning Identification.

The journal of physical chemistry letters
Accurate and early detection of C-peptide, a stable biomarker indicative of diabetes, is crucial for disease diagnosis, treatment, and prevention. This study explores a novel detection methodology using solid-state nanopore technology coupled with ma...

Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine.

Epigenetics & chromatin
DNA methylation is a fundamental epigenetic modification that regulates gene expression and maintains genomic stability. Consequently, DNA methylation remains a key biomarker in cancer research, playing a vital role in diagnosis, prognosis, and tailo...

AI-driven techniques for detection and mitigation of SARS-CoV-2 spread: a review, taxonomy, and trends.

Clinical and experimental medicine
The SARS-CoV-2 RNA virus, with its rapid spread and frequent genetic changes, has posed unparalleled obstacles for public health and treatment efforts. Early diagnosis of the disease and the development of effective treatment strategies are the main ...

Comprehensive statistical and machine learning framework for identification of metabolomic biomarkers in breast cancer.

Metabolomics : Official journal of the Metabolomic Society
INTRODUCTION: Breast cancer is the most common cancer among women, with its burden increasing over the past decades. Early diagnosis significantly improves survival rates and reduces lethality. Innovative technologies are being developed for early de...

Discovery of Novel Anti-Acetylcholinesterase Peptides Using a Machine Learning and Molecular Docking Approach.

Drug design, development and therapy
OBJECTIVE: Alzheimer's disease poses a significant threat to human health. Currenttherapeutic medicines, while alleviate symptoms, fail to reverse the disease progression or reduce its harmful effects, and exhibit toxicity and side effects such as ga...

Dataset resulting from the user study on comprehensibility of explainable AI algorithms.

Scientific data
This paper introduces a dataset that is the result of a user study on the comprehensibility of explainable artificial intelligence (XAI) algorithms. The study participants were recruited from 149 candidates to form three groups representing experts i...

AbEpiTope-1.0: Improved antibody target prediction by use of AlphaFold and inverse folding.

Science advances
B cell epitope prediction tools are crucial for designing vaccines and disease diagnostics. However, predicting which antigens a specific antibody binds to and their exact binding sites (epitopes) remains challenging. Here, we present AbEpiTope-1.0, ...

Fecal gut microbiota and amino acids as noninvasive diagnostic biomarkers of Pediatric inflammatory bowel disease.

Gut microbes
BACKGROUND AND AIMS: Fecal calprotectin (FCP) has limited specificity as diagnostic biomarker of pediatric inflammatory bowel disease (IBD), leading to unnecessary invasive endoscopies. This study aimed to develop and validate a fecal microbiota and ...