IEEE transactions on neural networks and learning systems
May 2, 2025
Mild cognitive impairment (MCI) represents an early stage of Alzheimer's disease (AD), characterized by subtle clinical symptoms that pose challenges for accurate diagnosis. The quest for the identification of MCI individuals has highlighted the impo...
BACKGROUND: Magnetic resonance imaging (MRI) is an essential tool for medical diagnosis. However, artifacts may degrade images obtained through MRI, especially owing to patient movement. Existing methods that mitigate the artifact problem are subject...
Artificial intelligence (AI) may provide a solution for improving access to expert, timely, and accurate magnetic resonance imaging (MRI) interpretation. The PARADIGM trial will provide level 1 evidence on the role of AI in the diagnosis of prostate ...
Segmentation and measurement of cardiac chambers from ultrasound is critical, but laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same problematic manual annotations. We build a pipeline for self-s...
OBJECTIVE: Mental health problems are the major cause of disability among adolescents. Personalized prevention may help to mitigate the development of mental health problems, but no tools are available to identify individuals at risk before they requ...
The international journal of cardiovascular imaging
Apr 29, 2025
Real time 2D phase contrast (RTPC) MRI is useful for flow quantification in atrial fibrillation (AF) patients, but data analysis requires time-consuming anatomical contouring for many cardiac time frames. Our goal was to develop a convolutional neura...
Brain tumor detection is essential for early diagnosis and successful treatment, both of which can significantly enhance patient outcomes. To evaluate brain MRI scans and categorize them into four types-pituitary, meningioma, glioma, and normal-this ...
Parkinson's disease ranks as the second most prevalent neurological disorder after Alzheimer's disease. Convolutional neural networks (CNNs) have been extensively employed in Parkinson's disease (PD) detection using MR images. However, CNN models gen...
BACKGROUND: T2-weighted images are a critical component of prostate magnetic resonance imaging (MRI), and it would be useful to automatically assess image quality (IQ) on a patient-specific basis without radiologist oversight.
Gliomas are the most common primary tumors of the central nervous system, and advances in genetics and molecular medicine have significantly transformed their classification and treatment. This study aims to predict the IDH1 genotype in gliomas using...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.