AIMC Topic: Mass Screening

Clear Filters Showing 31 to 40 of 448 articles

Leveraging AI to improve disease screening among American Indians: insights from the Strong Heart Study.

Experimental biology and medicine (Maywood, N.J.)
Screening tests for disease have their performance measured through sensitivity and specificity, which inform how well the test can discriminate between those with and without the condition. Typically, high values for sensitivity and specificity are ...

Nationwide real-world implementation of AI for cancer detection in population-based mammography screening.

Nature medicine
Artificial intelligence (AI) in mammography screening has shown promise in retrospective evaluations, but few prospective studies exist. PRAIM is an observational, multicenter, real-world, noninferiority, implementation study comparing the performanc...

High performance COVID-19 screening using machine learning.

La Tunisie medicale
Since the World Health Organization declared the Coronavirus Disease 2019 (COVID-19) pandemic as an international concern of public health emergency in the early 2020, several strategies have been initiated in many countries to prevent healthcare ser...

Machine learning-assisted construction of COPD self-evaluation questionnaire (COPD-EQ): a national multicentre study in China.

Journal of global health
BACKGROUND: Approximately 70% of chronic obstructive pulmonary disease (COPD) is underdiagnosed worldwide. We aimed to develop and validate a COPD self-evaluation questionnaire (COPD-EQ) that is better suited for COPD screening in China.

Stress Monitoring in Pandemic Screening: Insights from GSR Sensor and Machine Learning Analysis.

Biosensors
This study investigates the impact of patient stress on COVID-19 screening. An attempt was made to measure the level of anxiety of individuals undertaking rapid tests for SARS-CoV-2. To this end, a galvanic skin response (GSR) sensor that was connect...

Patient and practitioner perceptions around use of artificial intelligence within the English NHS diabetic eye screening programme.

Diabetes research and clinical practice
AIMS: Automated retinal image analysis using Artificial Intelligence (AI) can detect diabetic retinopathy as accurately as human graders, but it is not yet licensed in the NHS Diabetic Eye Screening Programme (DESP) in England. This study aims to ass...

Diagnostic Accuracy of Artificial Intelligence-Based Chest X-Ray reading for screening of Tuberculosis.

Journal of Nepal Health Research Council
BACKGROUND: Tuberculosis remains a public health challenge in Nepal and ranks as the seventh leading cause of death in the country. The END Tuberculosis strategy stresses - the screening for symptoms alone may not suffice; additional screening tools ...

Efficient Screening in Obstructive Sleep Apnea Using Sequential Machine Learning Models, Questionnaires, and Pulse Oximetry Signals: Mixed Methods Study.

Journal of medical Internet research
BACKGROUND: Obstructive sleep apnea (OSA) is a prevalent sleep disorder characterized by frequent pauses or shallow breathing during sleep. Polysomnography, the gold standard for OSA assessment, is time consuming and labor intensive, thus limiting di...

Screening for Depression and Anxiety Using a Nonverbal Working Memory Task in a Sample of Older Brazilians: Observational Study of Preliminary Artificial Intelligence Model Transferability.

JMIR formative research
BACKGROUND: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remote...