AIMC Topic: Melanoma

Clear Filters Showing 11 to 20 of 335 articles

Using Real-World Data for Machine-Learning Algorithms to Predict the Treatment Response in Advanced Melanoma: A Pilot Study for Personalizing Cancer Care.

JCO clinical cancer informatics
PURPOSE: The use of real-world data (RWD) in oncology is becoming increasingly important for clinical decision making and tailoring treatment. Despite the significant success of targeted therapy and immunotherapy in advanced melanoma, substantial var...

Digital quantification of Ki67 and PRAME in challenging melanocytic lesions - A novel diagnostic tool.

Pathology, research and practice
The interpretation of immunohistochemical markers in melanocytic lesions possesses difficulties due to expression in non-melanocytic cells and the time-consuming, non-reproducible nature of manual assessment. A digital tool that accurately quantifies...

Unveiling the power of Treg.Sig: a novel machine-learning derived signature for predicting ICI response in melanoma.

Frontiers in immunology
BACKGROUND: Although immune checkpoint inhibitor (ICI) represents a significant breakthrough in cancer immunotherapy, only a few patients benefit from it. Given the critical role of Treg cells in ICI treatment resistance, we explored a Treg-associate...

Automated assessment of skin histological tissue structures by artificial intelligence in cutaneous melanoma.

Pathology, research and practice
BACKGROUND: Prognostic histopathological features such as mitosis in melanoma are excluded from the staging systems due to inter-observer variability and time constraints. While digital pathology offers artificial intelligence-driven solutions, exist...

SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data.

Nature communications
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular...

Development of an external quality assurance (EQA) structure to evaluate the quality of genetic pathology reporting.

Clinica chimica acta; international journal of clinical chemistry
A standard for reporting genetic pathology results currently does not exist as a consensus. While effective reports are produced, there is lack of consistency on which details to present or to emphasise, and the ultimate report often reflects an indi...

Evaluating the Diagnostic Accuracy of ChatGPT-4 Omni and ChatGPT-4 Turbo in Identifying Melanoma: Comparative Study.

JMIR dermatology
ChatGPT is increasingly used in healthcare. Fields like dermatology and radiology could benefit from ChatGPT's ability to help clinicians diagnose skin lesions. This study evaluates the accuracy of ChatGPT in diagnosing melanoma. Our analysis indicat...

Artificial Intelligence and Convolutional Neural Networks-Driven Detection of Micro and Macro Metastasis of Cutaneous Melanoma to the Lymph Nodes.

The American Journal of dermatopathology
BACKGROUND: Lymph node (LN) assessment is a critical component in the staging and management of cutaneous melanoma. Traditional histopathological evaluation, supported by immunohistochemical staining, is the gold standard for detecting LN metastases....