AIMC Topic: Metals, Heavy

Clear Filters Showing 31 to 40 of 100 articles

Contribution assessment and accumulation prediction of heavy metals in wheat grain in a smelting-affected area using machine learning methods.

The Science of the total environment
Due to the diverse controlling factors and their uneven spatial distribution, especially atmospheric deposition from smelters, assessing and predicting the accumulation of heavy metals (HM) in crops across smelting-affected areas becomes challenging....

Identifying heavy metal sources and health risks in soil-vegetable systems of fragmented vegetable fields based on machine learning, positive matrix factorization model and Monte Carlo simulation.

Journal of hazardous materials
Urban fragmented vegetable fields offer fresh produce but pose a potential risk of heavy metal (HM) exposure. Thus, this study investigated HM sources and health risks in the soil-vegetable systems of Chongqing's central urban area. Results indicated...

Machine learning-based analysis of heavy metal contamination in Chinese lake basin sediments: Assessing influencing factors and policy implications.

Ecotoxicology and environmental safety
Sediments are important heavy metal sinks in lakes, crucial for ensuring water environment safety. Existing studies mainly focused on well-studied lakes, leaving gaps in understanding pollution patterns in specific basins and influencing factors.We c...

Predictive analysis and risk assessment of potentially toxic elements in Beijing gas station soils using machine learning and two-dimensional Monte Carlo simulations.

Journal of hazardous materials
Gas stations not only serve as sites for oil storage and refueling but also as locations where vehicles frequently brake, significantly enriching the surrounding soil with potentially toxic elements (PTEs). Herein, 117 topsoil samples from gas statio...

Adsorption behavior and mechanism of heavy metals onto microplastics: A meta-analysis assisted by machine learning.

Environmental pollution (Barking, Essex : 1987)
Microplastics (MPs) have the potential to adsorb heavy metals (HMs), resulting in a combined pollution threat in aquatic and terrestrial environments. However, due to the complexity of MP/HM properties and experimental conditions, research on the ads...

Rapid assessment of heavy metal accumulation capability of Sedum alfredii using hyperspectral imaging and deep learning.

Ecotoxicology and environmental safety
Hyperaccumulators are the material basis and key to the phytoremediation of heavy metal contaminated soils. Conventional methods for screening hyperaccumulators are highly dependent on the time- and labor-consuming sampling and chemical analysis. In ...

A novel prediction approach driven by graph representation learning for heavy metal concentrations.

The Science of the total environment
The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental f...

Machine learning-driven source identification and ecological risk prediction of heavy metal pollution in cultivated soils.

Journal of hazardous materials
To overcome challenges in assessing the impact of environmental factors on heavy metal accumulation in soil due to limited comprehensive data, our study in Yangxin County, Hubei Province, China, analyzed 577 soil samples in combination with extensive...

Association between machine learning-assisted heavy metal exposures and diabetic kidney disease: a cross-sectional survey and Mendelian randomization analysis.

Frontiers in public health
BACKGROUND AND OBJECTIVE: Heavy metals, ubiquitous in the environment, pose a global public health concern. The correlation between these and diabetic kidney disease (DKD) remains unclear. Our objective was to explore the correlation between heavy me...