AIMC Topic: Microbiota

Clear Filters Showing 31 to 40 of 199 articles

Graph-based deep learning for predictions on changes in microbiomes and biogas production in anaerobic digestion systems.

Water research
Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimising AD processes are challe...

Effects of data transformation and model selection on feature importance in microbiome classification data.

Microbiome
BACKGROUND: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, composi...

Neighborhood Topology-Aware Knowledge Graph Learning and Microbial Preference Inferring for Drug-Microbe Association Prediction.

Journal of chemical information and modeling
The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover...

DeepGOMeta for functional insights into microbial communities using deep learning-based protein function prediction.

Scientific reports
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Tradi...

Identifying human activities causing water pollution based on microbial community sequencing and source classifier machine learning.

Environment international
Identifying and differentiating human activities is crucial for effectively preventing the threats posed by environmental pollution to aquatic ecosystems and human health. Machine learning (ML) is a powerful analytical tool for tracking human impacts...

Understanding Parkinson's: The microbiome and machine learning approach.

Maturitas
OBJECTIVE: Given that Parkinson's disease is a progressive disorder, with symptoms that worsen over time, our goal is to enhance the diagnosis of Parkinson's disease by utilizing machine learning techniques and microbiome analysis. The primary object...

Comparative analysis of the human microbiome from four different regions of China and machine learning-based geographical inference.

mSphere
The human microbiome, the community of microorganisms that reside on and inside the human body, is critically important for health and disease. However, it is influenced by various factors and may vary among individuals residing in distinct geographi...

Integrating microbial profiling and machine learning for inference of drowning sites: a forensic investigation in the Northwest River.

Microbiology spectrum
Drowning incidents present significant challenges for forensic investigators in determining the exact site of occurrence. Traditional forensic methods often rely on physical evidence and circumstantial clues, but the emerging field of forensic microb...

Oral Microbe Community and Pyramid Scene Parsing Network-based Periodontitis Risk Prediction.

International dental journal
BACKGROUND: Periodontitis (PD) is a common chronic inflammatory disease affecting the gums and supporting tooth structures. It is often diagnosed only after significant irreversible tissue damage - such as gum recession and bone loss - has occurred, ...

Diagnostic potential of salivary microbiota in persistent pulmonary nodules: identifying biomarkers and functional pathways using 16S rRNA sequencing and machine learning.

Journal of translational medicine
BACKGROUND: The aim of this study was to explore the microbial variations and biomarkers in the oral environment of patients with persistent pulmonary nodules (pPNs) and to reveal the potential biological functions of the salivary microbiota in pPNs.