PURPOSE: This study aims to develop a deep-learning-based software capable of detecting and differentiating microaneurysms (MAs) as hyporeflective or hyperreflective on structural optical coherence tomography (OCT) images in patients with non-prolife...
OBJECTIVE: This study aims to develop a fully automated, computed tomography (CT)-based deep learning (DL) model to segment ossified lesions of the posterior longitudinal ligament and to measure the thickness of the ossified material and calculate th...
AIMS: Thyroid eye disease (TED) is an autoimmune orbital disorder that diminishes the quality of life (QOL) in affected individuals. Graves' ophthalmopathy (GO)-QOL questionnaire effectively assesses TED's effect on patients. This study aims to inves...
BMC medical informatics and decision making
Jan 9, 2025
BACKGROUND: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is ur...
OBJECTIVES: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
BACKGROUND: Mental disorders are increasingly prevalent, leading to increased medical expenditures. To refine the reimbursement of medical costs for inpatients with mental disorders by health insurance, an accurate prediction model is essential. Per-...
Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance...
To create a diagnostic tool before biopsy for patients with prostate-specific antigen (PSA) levels < 20 ng/ml to minimize prostate biopsy-related discomfort and risks. Data from 655 patients who underwent transperineal prostate biopsy at the First Af...
We developed an AI system capable of automatically classifying anterior eye images as either normal or indicative of corneal diseases. This study aims to investigate the influence of AI's misleading guidance on ophthalmologists' responses. This cross...
This study aimed to develop and validate machine learning (ML) models to predict the occurrence of delayed hyponatremia after transsphenoidal surgery for pituitary adenoma. We retrospectively collected clinical data on patients with pituitary adenoma...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.