AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Multiple Pulmonary Nodules

Showing 31 to 40 of 129 articles

Clear Filters

Imaging of Solid Pulmonary Nodules.

Clinics in chest medicine
Early detection with accurate classification of solid pulmonary nodules is critical in reducing lung cancer morbidity and mortality. Computed tomography (CT) remains the most widely used imaging examination for pulmonary nodule evaluation; however, o...

AI-driven Characterization of Solid Pulmonary Nodules on CT Imaging for Enhanced Malignancy Prediction in Small-sized Lung Adenocarcinoma.

Clinical lung cancer
OBJECTIVES: Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, whic...

Deep Learning Models for Predicting Malignancy Risk in CT-Detected Pulmonary Nodules: A Systematic Review and Meta-analysis.

Lung
BACKGROUND: There has been growing interest in using artificial intelligence/deep learning (DL) to help diagnose prevalent diseases earlier. In this study we sought to survey the landscape of externally validated DL-based computer-aided diagnostic (C...

[Artificial intelligence research advances in discrimination and diagnosis of pulmonary ground-glass nodules].

Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases
Lung cancer, which accounts for about 18% of all cancer-related deaths worldwide, has a dismal 5-year survival rate of less than 20%. Survival rates for early-stage lung cancers (stages IA1, IA2, IA3, and IB, according to the TNM staging system) are ...

Detecting pulmonary malignancy against benign nodules using noninvasive cell-free DNA fragmentomics assay.

ESMO open
BACKGROUND: Early screening using low-dose computed tomography (LDCT) can reduce mortality caused by non-small-cell lung cancer. However, ∼25% of the 'suspicious' pulmonary nodules identified by LDCT are later confirmed benign through resection surge...

Machine Learning for Early Discrimination Between Lung Cancer and Benign Nodules Using Routine Clinical and Laboratory Data.

Annals of surgical oncology
BACKGROUND: Lung cancer poses a global health threat necessitating early detection and precise staging for improved patient outcomes. This study focuses on developing and validating a machine learning-based risk model for early lung cancer screening ...

Deep learning in pulmonary nodule detection and segmentation: a systematic review.

European radiology
OBJECTIVES: The accurate detection and precise segmentation of lung nodules on computed tomography are key prerequisites for early diagnosis and appropriate treatment of lung cancer. This study was designed to compare detection and segmentation metho...

Artificial intelligence-based graded training of pulmonary nodules for junior radiology residents and medical imaging students.

BMC medical education
BACKGROUND: To evaluate the efficiency of artificial intelligence (AI)-assisted diagnosis system in the pulmonary nodule detection and diagnosis training of junior radiology residents and medical imaging students.

Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT.

Journal of computer assisted tomography
OBJECTIVE: The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterativ...