OBJECTIVES: To implement a pipeline to automatically segment the ROI and to use a nomogram integrating the MRI-based radiomics score and clinical variables to predict responses to neoadjuvant chemotherapy (NAC) in osteosarcoma patients.
BACKGROUND: A barrier to the widespread adoption of watch-and-wait management for locally advanced rectal cancer is the inaccuracy and variability of identifying tumor response endoscopically in patients who have completed total neoadjuvant therapy (...
In this study, a novel deep learning-based methodology was investigated to predict breast cancer response to neo-adjuvant chemotherapy (NAC) using the quantitative ultrasound (QUS) multi-parametric imaging at pre-treatment. QUS multi-parametric image...
BACKGROUND: Delineation of clinical target volume (CTV) for radiotherapy is a time-consuming and labor-intensive work. This study aims to propose a novel convolutional neural network (CNN)-based model for fast auto-segmentation of CTV. To evaluate it...
OBJECTIVES: Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to dela...
BACKGROUND: Accurate response evaluation is necessary to select complete responders (CRs) for a watch-and-wait approach. Deep learning may aid in this process, but so far has never been evaluated for this purpose. The aim was to evaluate the accuracy...
The achievement of the pathologic complete response (pCR) has been considered a metric for the success of neoadjuvant chemotherapy (NAC) and a powerful surrogate indicator of the risk of recurrence and long-term survival. This study aimed to develop ...
BACKGROUND: Pathological complete response (pCR) is considered a surrogate endpoint for favorable survival in breast cancer patients treated with neoadjuvant chemotherapy (NAC). Predictive biomarkers of treatment response are crucial for guiding trea...
IEEE journal of biomedical and health informatics
Jul 27, 2021
Radiomics has shown remarkable potential for predicting the survival outcome for various types of cancers such as pancreatic ductal adenocarcinoma (PDAC). However, to date, there has been limited research using convolutional neural networks (CNN) wit...