Effective clinical management of patients with cancer requires highly accurate diagnosis, precise therapy selection, and highly sensitive monitoring of disease burden. Caris Assure is a multifunctional blood-based assay that couples whole exome and w...
PURPOSE: To investigate the feasibility of characterizing tumor heterogeneity in breast cancer ultrasound images using habitat analysis technology and establish a radiomics machine learning model for predicting response to neoadjuvant chemotherapy (N...
Minimal residual disease (MRD) assessment is a known surrogate marker for survival in multiple myeloma (MM). Here, we present a single institution's experience assessing MRD by NGS of Ig genes and the long-term impact of depth of response as well as ...
The American journal of surgical pathology
Jul 2, 2024
Neoadjuvant therapy (NAT) has become routine in patients with borderline resectable pancreatic cancer. Pathologists examine pancreatic cancer resection specimens to evaluate the effect of NAT. However, an automated scoring system to objectively quant...
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (T...
OBJECTIVE: It has been shown that optical coherence tomography (OCT) can identify brain tumor tissue and potentially be used for intraoperative margin diagnostics. However, there is limited evidence on its use in human in vivo settings, particularly ...
OBJECTIVE: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer.
Cytometry. Part B, Clinical cytometry
Feb 28, 2024
Multiparameter flow cytometry is widely used for acute myeloid leukemia minimal residual disease testing (AML MRD) but is time consuming and demands substantial expertise. Machine learning offers potential advancements in accuracy and efficiency, but...
PURPOSE: To evaluate the diagnostic value of T1-weighted 3D fast spin-echo sequence (CUBE) with deep learning-based reconstruction (DLR) for depiction of pituitary adenoma and parasellar regions on contrast-enhanced MRI.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.