Diabetes occurs due to the excess of glucose in the blood that may affect many organs of the body. Elevated blood sugar in the body causes many problems including Diabetic Retinopathy (DR). DR occurs due to the mutilation of the blood vessels in the ...
PURPOSE: To develop deep learning models for detecting reticular pseudodrusen (RPD) using fundus autofluorescence (FAF) images or, alternatively, color fundus photographs (CFP) in the context of age-related macular degeneration (AMD).
PURPOSE: To evaluate the performance of retinal specialists in detecting retinal fluid presence in spectral domain OCT (SD-OCT) scans from eyes with age-related macular degeneration (AMD) and compare performance with an artificial intelligence algori...
Retinopathy of prematurity (ROP) is the leading cause of childhood blindness in very-low-birthweight and very preterm infants in the United States. With improved survival of smaller babies, more infants are at risk for ROP, yet there is an increasing...
OBJECTIVE: To compare the diagnostic performance of an artificial intelligence deep learning system with that of expert neuro-ophthalmologists in classifying optic disc appearance.
PURPOSE OF REVIEW: The use of artificial intelligence (AI) in ophthalmology has increased dramatically. However, interpretation of these studies can be a daunting prospect for the ophthalmologist without a background in computer or data science. This...
PURPOSE OF REVIEW: As artificial intelligence continues to develop new applications in ophthalmic image recognition, we provide here an introduction for ophthalmologists and a primer on the mechanisms of deep learning systems.
IEEE journal of biomedical and health informatics
32750970
Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generat...