AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Pancreas

Showing 11 to 20 of 148 articles

Clear Filters

Artificial Intelligence in Pancreatic Image Analysis: A Review.

Sensors (Basel, Switzerland)
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical ima...

Automatically Detecting Pancreatic Cysts in Autosomal Dominant Polycystic Kidney Disease on MRI Using Deep Learning.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Pancreatic cysts in autosomal dominant polycystic kidney disease (ADPKD) correlate with PKD2 mutations, which have a different phenotype than PKD1 mutations. However, pancreatic cysts are commonly overlooked by radiologists. Here, we auto...

Detection and characterization of pancreatic lesion with artificial intelligence: The SFR 2023 artificial intelligence data challenge.

Diagnostic and interventional imaging
PURPOSE: The purpose of the 2023 SFR data challenge was to invite researchers to develop artificial intelligence (AI) models to identify the presence of a pancreatic mass and distinguish between benign and malignant pancreatic masses on abdominal com...

Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression.

Investigative radiology
OBJECTIVE: Deep learning (DL)-enabled magnetic resonance imaging (MRI) reconstructions can enable shortening of breath-hold examinations and improve image quality by reducing motion artifacts. Prospective studies with DL reconstructions of accelerate...

Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation.

Medical physics
BACKGROUND: The pancreas is a complex abdominal organ with many anatomical variations, and therefore automated pancreas segmentation from medical images is a challengingĀ application.

Machine learning-assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues.

Journal of biomedical optics
SIGNIFICANCE: Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tum...

Main challenges on the curation of large scale datasets for pancreas segmentation using deep learning in multi-phase CT scans: Focus on cardinality, manual refinement, and annotation quality.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Accurate segmentation of the pancreas in computed tomography (CT) holds paramount importance in diagnostics, surgical planning, and interventions. Recent studies have proposed supervised deep-learning models for segmentation, but their efficacy relie...

Enhancing detection of various pancreatic lesions on endoscopic ultrasound through artificial intelligence: a basis for computer-aided detection systems.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: Endoscopic ultrasound (EUS) is the most sensitive method for evaluation of pancreatic lesions but is limited by significant operator dependency. Artificial intelligence (AI), in the form of computer-aided detection (CADe) systems,...

Deep Learning and Automatic Differentiation of Pancreatic Lesions in Endoscopic Ultrasound: A Transatlantic Study.

Clinical and translational gastroenterology
INTRODUCTION: Endoscopic ultrasound (EUS) allows for characterization and biopsy of pancreatic lesions. Pancreatic cystic neoplasms (PCN) include mucinous (M-PCN) and nonmucinous lesions (NM-PCN). Pancreatic ductal adenocarcinoma (P-DAC) is the commo...