BACKGROUND: Visceral pleural invasion (VPI), including PL1 (the tumor invades beyond the elastic layer) and PL2 (the tumor extends to the surface of the visceral pleura), plays a crucial role in staging Non-Small Cell Lung Cancer (NSCLC). However, th...
PURPOSE: This study aimed to assess the efficiency of artificial intelligence (AI) in the detection of visceral pleural invasion (VPI) of lung cancer using high-resolution computed tomography (HRCT) images, which is challenging for experts because of...
PURPOSE: To develop deep learning models using thoracoscopic images to identify visceral pleural invasion (VPI) in patients with clinical stage I lung adenocarcinoma, and to verify if these models can be applied clinically.
AIM: The aim of this study was to develop a PET-based machine learning model for predicting visceral pleural invasion (VPI) in patients with clinical stage IA non-small cell lung cancer.
AIM: To assess the predictive performance, risk stratification capabilities, and auxiliary diagnostic utility of radiomics, deep learning, and fusion models in identifying visceral pleural invasion (VPI) in lung adenocarcinoma.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.