AIMC Topic: Postoperative Complications

Clear Filters Showing 131 to 140 of 993 articles

Evaluation and analysis of risk factors for adverse events of the fractured vertebra post-percutaneous kyphoplasty: a retrospective cohort study using multiple machine learning models.

Journal of orthopaedic surgery and research
BACKGROUND: Adverse events of the fractured vertebra (AEFV) post-percutaneous kyphoplasty (PKP) can lead to recurrent pain and neurological damage, which considerably affect the prognosis of patients and the quality of life. This study aimed to analy...

Machine Learning for the Prediction of Surgical Morbidity in Placenta Accreta Spectrum.

American journal of perinatology
OBJECTIVE:  We sought to create a machine learning (ML) model to identify variables that would aid in the prediction of surgical morbidity in cases of placenta accreta spectrum (PAS).

Integrating StEP-COMPAC definition and enhanced recovery after surgery status in a machine-learning-based model for postoperative pulmonary complications in laparoscopic hepatectomy.

Anaesthesia, critical care & pain medicine
BACKGROUND: Postoperative pulmonary complications (PPCs) contribute to high mortality rates and impose significant financial burdens. In this study, a machine learning-based prediction model was developed to identify patients at high risk of developi...

Advanced Non-linear Modeling and Explainable Artificial Intelligence Techniques for Predicting 30-Day Complications in Bariatric Surgery: A Single-Center Study.

Obesity surgery
PURPOSE: Metabolic bariatric surgery (MBS) became integral to managing severe obesity. Understanding surgical risks associated with MBS is crucial. Different scores, such as the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Pr...

Clinical Application of Artificial Intelligence in Prediction of Intraoperative Cerebrospinal Fluid Leakage in Pituitary Surgery: A Systematic Review and Meta-Analysis.

World neurosurgery
BACKGROUND: Postoperative cerebrospinal fluid (CSF) leakage is the leading adverse event in transsphenoidal surgery. Intraoperative CSF (ioCSF) leakage is one of the most important predictive factors for postoperative CSF leakage. This systematic rev...

Effect of machine learning models on clinician prediction of postoperative complications: the Perioperative ORACLE randomised clinical trial.

British journal of anaesthesia
BACKGROUND: Anaesthesiologists might be able to mitigate risk if they know which patients are at greatest risk for postoperative complications. This trial examined the impact of machine learning models on clinician risk assessment.

"Identifying complication risk factors in reduction mammaplasty: a single-center analysis of 1021 patients applying machine learning methods".

Updates in surgery
Various surgical approaches and pedicles have been described to ensure safe and satisfactory results in reduction mammaplasty. Although different breasts require different techniques, complications are common. This study aims to assess the incidence ...

Machine learning analysis of contrast-enhanced ultrasound (CEUS) for the diagnosis of acute graft dysfunction in kidney transplant recipients.

Medical ultrasonography
AIM: The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This pro...

Construction and verification of a machine learning-based prediction model of deep vein thrombosis formation after spinal surgery.

International journal of medical informatics
BACKGROUND: Deep vein thromboembolism (DVT) is a common postoperative complication with high morbidity and mortality rates. However, the safety and effectiveness of using prophylactic anticoagulants for preventing DVT after spinal surgery remain cont...

Optimal inputs for machine learning models in predicting total joint arthroplasty outcomes: a systematic review.

European journal of orthopaedic surgery & traumatology : orthopedie traumatologie
INTRODUCTION: Machine learning (ML) models may offer a novel solution to reducing postoperative complication rates and improving post-surgical outcomes after total joint arthroplasty (TJA). However, the variety of different ML models that exist paire...