AIMC Topic: Pregnancy

Clear Filters Showing 131 to 140 of 1119 articles

Video Clip Extraction From Fetal Ultrasound Scans Using Artificial Intelligence to Allow Remote Second Expert Review for Congenital Heart Disease.

Prenatal diagnosis
OBJECTIVE: To use artificial intelligence (AI) to automatically extract video clips of the fetal heart from a stream of ultrasound video, and to assess the performance of these when used for remote second review.

Association between deep learning radiomics based on placental MRI and preeclampsia with fetal growth restriction: A multicenter study.

European journal of radiology
PURPOSE: Preeclampsia (PE) is associated with placental insufficiency and could lead to adverse pregnancy outcomes. The study aimed to develop a placental T2-weighted image-based automatic quantitative model for the identification of PE pregnancies a...

Ensemble learning to predict short birth interval among reproductive-age women in Ethiopia: evidence from EDHS 2016-2019.

BMC pregnancy and childbirth
BACKGROUND: A birth interval of less than 33 months was considered short, and in low- income countries like Ethiopia, a short birth interval is the primary cause of approximately 822 maternal deaths every day. Due to that this study aimed to predict ...

Proficiency, Clarity, and Objectivity of Large Language Models Versus Specialists' Knowledge on COVID-19's Impacts in Pregnancy: Cross-Sectional Pilot Study.

JMIR formative research
BACKGROUND: The COVID-19 pandemic has significantly strained health care systems globally, leading to an overwhelming influx of patients and exacerbating resource limitations. Concurrently, an "infodemic" of misinformation, particularly prevalent in ...

Consecutive prediction of adverse maternal outcomes of preeclampsia, using the PIERS-ML and fullPIERS models: A multicountry prospective observational study.

PLoS medicine
BACKGROUND: Preeclampsia is a potentially life-threatening pregnancy complication. Among women whose pregnancies are complicated by preeclampsia, the Preeclampsia Integrated Estimate of RiSk (PIERS) models (i.e., the PIERS Machine Learning [PIERS-ML]...

Prenatal Diagnostics Using Deep Learning: A Dual Approach to Plane Localization and Cerebellum Segmentation in Ultrasound Images.

Journal of clinical ultrasound : JCU
OBJECTIVE: The fetal ultrasound examination is the significant task of mid-term pregnancy inspection and the accurate localization as well as the segmentation of the cerebellum is crucial for clinical diagnosis. This research focuses on developing de...

Machine learning analysis of the relationships between traumatic childbirth experience with positive and negative fertility motivations in Iran in a community-based sample.

Reproductive health
BACKGROUND: Psychologically traumatic childbirth leads to short and long-term negative impacts on a woman's health and impacts future reproductive decisions. Considering the importance of fertility growth and strengthening positive fertility motivati...

Untargeted metabolomics and machine learning unveil the exposome and metabolism linked with the risk of early pregnancy loss.

Journal of hazardous materials
Early pregnancy loss (EPL) may result from exposure to emerging contaminants (ECs), although the underlying mechanisms remain poorly understood. This case-control study measured over 2000 serum features, including 37 ECs, 6 biochemicals, and 2057 end...

Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Artificial intelligence (AI) models analyzing embryo time-lapse images have been developed to predict the likelihood of pregnancy following in vitro fertilization (IVF). However, limited research exists on methods ensuring AI consistency ...

A survey of obstetric ultrasound uses and priorities for artificial intelligence-assisted obstetric ultrasound in low- and middle-income countries.

Scientific reports
Obstetric ultrasound (OBUS) is recommended as part of antenatal care for pregnant individuals worldwide. To better understand current uses of OBUS in low- and middle-income countries and perceptions regarding potential use of artificial intelligence ...