AIMC Topic: Protein Conformation

Clear Filters Showing 361 to 370 of 560 articles

MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

Journal of molecular biology
Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO,...

Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning.

Journal of biomolecular structure & dynamics
Thrombin is a key component for chemotherapeutic and antithrombotic therapy development. As the physiologic and pathologic roles of the light chain still remain vague, here, we continue previous efforts to understand the impacts of the disease-associ...

Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains.

Journal of theoretical biology
The receptor-associated protein (RAP) is an inhibitor of endocytic receptors that belong to the lipoprotein receptor gene family. In this study, a computational approach was tried to find the evolutionarily related fold of the RAP proteins. Through t...

PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.

Journal of theoretical biology
Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been s...

Predicting the Effect of Single and Multiple Mutations on Protein Structural Stability.

Molecules (Basel, Switzerland)
Predicting how a point mutation alters a protein's stability can guide pharmaceutical drug design initiatives which aim to counter the effects of serious diseases. Conducting mutagenesis studies in physical proteins can give insights about the effect...

Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition.

Journal of chemical information and modeling
Inspired by natural language processing techniques, we here introduce Mol2vec, which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Like the Word2vec models, where vectors of closely related w...

Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.

Cell systems
While genes are defined by sequence, in biological systems a protein's function is largely determined by its three-dimensional structure. Evolutionary information embedded within multiple sequence alignments provides a rich source of data for inferri...

Protein structure modeling and refinement by global optimization in CASP12.

Proteins
For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequ...