BACKGROUND: Many studies have utilized optical camera systems with volumetric scintillators for quality assurances (QA) to estimate the proton beam range. However, previous analytically driven range estimation methods have the difficulty to derive th...
The confounder-corrected chemical shift-encoded MRI (CSE-MRI) sequence used to determine proton density fat fraction (PDFF) for hepatic fat quantification is not widely available. As an alternative, hepatic fat can be assessed by a two-point Dixon m...
Nan fang yi ke da xue xue bao = Journal of Southern Medical University
37712275
OBJECTIVE: To propose a Dual-Aware deep learning framework for genotyping of isocitrate dehydrogenase (IDH) in gliomas based on magnetic resonance amide proton transfer (APT) modality data as a means to assist non-invasive diagnosis of gliomas.
BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose predicti...
BACKGROUND: In proton therapy, it is disputed whether synthetic computed tomography (sCT), derived from magnetic resonance imaging (MRI), permits accurate dose calculations. On the one hand, an MRI-only workflow could eliminate errors caused by, e.g....
BACKGROUND: In the Danish Head and Neck Cancer Group (DAHANCA) 35 trial, patients are selected for proton treatment based on simulated reductions of Normal Tissue Complication Probability (NTCP) for proton compared to photon treatment at the referrin...
OBJECTIVE: Mapping CT number to material property dominates the proton range uncertainty. This work aims to develop a physics-constrained deep learning-based multimodal imaging (PDMI) framework to integrate physics, deep learning, MRI, and advanced d...
BACKGROUND: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and rel...
OBJECTIVES: To develop a deep learning (DL) model for segmentation of the suprapatellar capsule (SC) and infrapatellar fat pad (IPFP) based on sagittal proton density-weighted images and to distinguish between three common types of knee synovitis.