AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Quantitative Trait Loci

Showing 11 to 20 of 71 articles

Clear Filters

Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits.

PloS one
We present a comparison of machine learning methods for the prediction of four quantitative traits in Arabidopsis thaliana. High prediction accuracies were achieved on individuals grown under standardized laboratory conditions from the 1001 Arabidops...

Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to .

International journal of molecular sciences
(Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor gene...

Analyzing Medicago spp. seed morphology using GWAS and machine learning.

Scientific reports
Alfalfa is widely recognized as an important forage crop. To understand the morphological characteristics and genetic basis of seed morphology in alfalfa, we screened 318 Medicago spp., including 244 Medicago sativa subsp. sativa (alfalfa) and 23 oth...

Enhancing Gene Expression Predictions Using Deep Learning and Functional Annotations.

Genetic epidemiology
Transcriptome-wide association studies (TWAS) aim to uncover genotype-phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the pred...

Machine learning-enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in cannabis.

The Plant journal : for cell and molecular biology
Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS ...

Predicting cell type-specific epigenomic profiles accounting for distal genetic effects.

Nature communications
Understanding how genetic variants affect the epigenome is key to interpreting GWAS, yet profiling these effects across the non-coding genome remains challenging due to experimental scalability. This necessitates accurate computational models. Existi...

Sub-sampling graph neural networks for genomic prediction of quantitative phenotypes.

G3 (Bethesda, Md.)
In genomics, use of deep learning (DL) is rapidly growing and DL has successfully demonstrated its ability to uncover complex relationships in large biological and biomedical data sets. With the development of high-throughput sequencing techniques, g...

Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy.

Diabetes, obesity & metabolism
AIM: To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation.

scTWAS Atlas: an integrative knowledgebase of single-cell transcriptome-wide association studies.

Nucleic acids research
Single-cell transcriptome-wide association studies (scTWAS) is a new method for conducting TWAS analysis at the cellular level to identify gene-trait associations with higher precision. This approach helps overcome the challenge of interpreting cell-...