Journal of computer assisted tomography
May 13, 2025
OBJECTIVE: The aim of the study was to evaluate the image quality of coronary computed tomography (CT) angiography (CCTA) in obese patients by using deep learning image reconstruction (DLIR) in comparison with adaptive statistical iterative reconstru...
PURPOSE: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
OBJECTIVE: To develop an accurate method for converting dose-area product (DAP) to patient dose for dental cone-beam computed tomography (CBCT) using deep learning.
Radiographics : a review publication of the Radiological Society of North America, Inc
Dec 1, 2024
The implementation of deep neural networks has spurred the creation of deep learning reconstruction (DLR) CT algorithms. DLR CT techniques encompass a spectrum of deep learning-based methodologies that operate during the different steps of the image ...
This paper focuses on the neutron spectrum measurement using a liquid scintillation detector, where the neutron spectrum could be identified and unfolded from the light output distribution of the EJ-301 liquid scintillation detector through a linear ...
OBJECTIVE: To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone.
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Jul 1, 2024
The medical application of Computed Tomography (CT) is to provide detailed anatomical structures of patients without the need for invasive procedures like surgery, which is very useful for clinicians in disease diagnosis. Excessive radiation exposure...
Cosmic radiation exposure is one of the important health concerns for aircrews. In this work, we constructed a back propagation neural network model for the real-time and rapid assessment of cosmic radiation exposure to the public in aviation. The mu...
OBJECTIVE: To evaluate the image quality of novel dark-blood computed tomography angiography (CTA) imaging combined with deep learning reconstruction (DLR) compared to delayed-phase CTA images with hybrid iterative reconstruction (HIR), to visualize ...
Purpose To compare the image quality and diagnostic capability in detecting malignant liver tumors of low-dose CT (LDCT, 33% dose) with deep learning-based denoising (DLD) and standard-dose CT (SDCT, 100% dose) with model-based iterative reconstructi...