AIMC Topic: Radiography, Abdominal

Clear Filters Showing 1 to 10 of 93 articles

Radiomics and machine learning for osteoporosis detection using abdominal computed tomography: a retrospective multicenter study.

BMC medical imaging
OBJECTIVE: This study aimed to develop and validate a predictive model to detect osteoporosis using radiomic features and machine learning (ML) approaches from lumbar spine computed tomography (CT) images during an abdominal CT examination.

Estimating patient-specific organ doses from head and abdominal CT scans via machine learning with optimized regulation strength and feature quantity.

Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
PURPOSE: This study aims to investigate estimation of patient-specific organ doses from CT scans via radiomics feature-based SVR models with training parameter optimization, and maximize SVR models' predictive accuracy and robustness via fine-tuning ...

Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study.

AJR. American journal of roentgenology
Radiologists are prone to missing some colorectal cancers (CRCs) on routine abdominopelvic CT examinations that are in fact detectable on the images. The purpose of this study was to develop an artificial intelligence (AI) model to detect CRC on ro...

The impact of the novel CovBat harmonization method on enhancing radiomics feature stability and machine learning model performance: A multi-center, multi-device study.

European journal of radiology
PURPOSE: This study aims to assess whether the novel CovBat harmonization method can further reduce radiomics feature variability from different imaging devices in multi-center studies and improve machine learning model performance compared to the Co...

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Investigative radiology
OBJECTIVE: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based ite...

Opportunistic AI for enhanced cardiovascular disease risk stratification using abdominal CT scans.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
This study introduces the Deep Learning-based Cardiovascular Disease Incident (DL-CVDi) score, a novel biomarker derived from routine abdominal CT scans, optimized to predict cardiovascular disease (CVD) risk using deep survival learning. CT imaging,...

Reduced-dose deep learning iterative reconstruction for abdominal computed tomography with low tube voltage and tube current.

BMC medical informatics and decision making
BACKGROUND: The low tube-voltage technique (e.g., 80 kV) can efficiently reduce the radiation dose and increase the contrast enhancement of vascular and parenchymal structures in abdominal CT. However, a high tube current is always required in this s...

Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.

Tomography (Ann Arbor, Mich.)
Advancements in artificial intelligence (AI) have significantly transformed the field of abdominal radiology, leading to an improvement in diagnostic and disease management capabilities. This narrative review seeks to evaluate the current standing of...