AIMC Topic: Radiography, Abdominal

Clear Filters Showing 11 to 20 of 93 articles

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

Japanese journal of radiology
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...

PACT-3D, a deep learning algorithm for pneumoperitoneum detection in abdominal CT scans.

Nature communications
Delays or misdiagnoses in detecting pneumoperitoneum can significantly increase mortality and morbidity. We developed and validated a deep learning model designed to identify pneumoperitoneum in computed tomography images. The model is trained on abd...

Advances in spatial resolution and radiation dose reduction using super-resolution deep learning-based reconstruction for abdominal computed tomography: A phantom study.

Academic radiology
RATIONALE AND OBJECTIVES: This study evaluated the performance of super-resolution deep learning-based reconstruction (SR-DLR) and compared with it that of hybrid iterative reconstruction (HIR) and normal-resolution DLR (NR-DLR) for enhancing image q...

Quality assessment of expedited AI generated reformatted images for ED acquired CT abdomen and pelvis imaging.

Abdominal radiology (New York)
PURPOSE: Retrospectively compare image quality, radiologist diagnostic confidence, and time for images to reach PACS for contrast enhanced abdominopelvic CT examinations created on the scanner console by technologists versus those generated automatic...

Artificial intelligence system for identification of overlooked lung metastasis in abdominopelvic computed tomography scans of patients with malignancy.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: This study aimed to evaluate whether an artificial intelligence (AI) system can identify basal lung metastatic nodules examined using abdominopelvic computed tomography (CT) that were initially overlooked by radiologists.

Fast prediction of personalized abdominal organ doses from CT examinations by radiomics feature-based machine learning models.

Scientific reports
The X-rays emitted during CT scans can increase solid cancer risks by damaging DNA, with the risk tied to patient-specific organ doses. This study aims to establish a new method to predict patient specific abdominal organ doses from CT examinations u...

Clinical feasibility of deep learning based synthetic contrast enhanced abdominal CT in patients undergoing non enhanced CT scans.

Scientific reports
Our objective was to develop and evaluate the clinical feasibility of deep-learning-based synthetic contrast-enhanced computed tomography (DL-SynCCT) in patients designated for nonenhanced CT (NECT). We proposed a weakly supervised learning with the ...

Deep learning-based fully automatic Risser stage assessment model using abdominal radiographs.

Pediatric radiology
BACKGROUND: Artificial intelligence has been increasingly used in medical imaging and has demonstrated expert level performance in image classification tasks.