International journal of computer assisted radiology and surgery
Feb 6, 2021
PURPOSE: The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorit...
IEEE transactions on neural networks and learning systems
Feb 4, 2021
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade recognition is a challenging problem for radiologists in health monitoring and automated diagnosis. Recently, numerous methods based on deep learning have been pres...
Background The solid portion size of lung cancer lesions manifesting as subsolid lesions is key in their management, but the automatic measurement of such lesions by means of a deep learning (DL) algorithm needs evaluation. Purpose To evaluate the pe...
The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from ...
This study aims to develop an artificial intelligence (AI)-based model to assist radiologists in pneumoconiosis screening and staging using chest radiographs. The model, based on chest radiographs, was developed using a training cohort and validated ...
Oral surgery, oral medicine, oral pathology and oral radiology
Jan 22, 2021
OBJECTIVE: The aim of this study was to compare the diagnostic performance of convolutional neural networks (CNNs) with the performance of human observers for the detection of simulated periapical lesions on periapical radiographs.
RATIONALE AND OBJECTIVES: Radiographic findings of COVID-19 pneumonia can be used for patient risk stratification; however, radiologist reporting of disease severity is inconsistent on chest radiographs (CXRs). We aimed to see if an artificial intell...