BACKGROUND: Unplanned readmissions increase unnecessary health care costs and reduce the quality of care. It is essential to plan the discharge care from the beginning of hospitalization to reduce the risk of readmission. Machine learning-based readm...
BACKGROUND: The incidence of delirium in patients with burns receiving treatment in the intensive care unit (ICU) is high, reaching up to 77%, and has been associated with increased mortality rates. Therefore, early identification of patients at high...
Regulatory toxicology and pharmacology : RTP
Mar 4, 2025
The skin is the main route of exposure to plant protection products for operators, workers, residents, and bystanders. Assessing dermal absorption is key for evaluating pesticide exposure. The initial approach to risk assessment involves using defaul...
Journal of the American Heart Association
Mar 3, 2025
BACKGROUND: Thoracic endovascular aortic repair (TEVAR) and complex endovascular aneurysm repair (EVAR) are complex procedures that carry a significant risk of complications. While risk prediction tools can aid in clinical decision making, they remai...
World journal of emergency surgery : WJES
Mar 3, 2025
BACKGROUND: Mild acute biliary pancreatitis (MABP) presents significant clinical and economic challenges due to its potential for relapse. Current guidelines advocate for early cholecystectomy (EC) during the same hospital admission to prevent recurr...
BACKGROUND: Current prediction models are suboptimal for determining mortality risk in patients with acute pancreatitis (AP); this might be improved by using a machine learning (ML) model. In this study, we aimed to construct an explainable ML model ...
BACKGROUND: Machine learning (ML) models are being increasingly employed to predict the risk of developing and progressing diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). However, the performance of these models still ...
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.
BACKGROUND: The atherogenic index of plasma (AIP) is considered an important marker of atherosclerosis and cardiovascular risk. However, its potential role in predicting length of stay (LOS), especially in patients with atherosclerotic cardiovascular...
OBJECTIVES: This study aims to develop sarcopenia risk prediction models for Chinese older adults at different time intervals and to identify and compare modifiable factors contributing to sarcopenia development.