AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Assessment

Showing 371 to 380 of 2320 articles

Clear Filters

Machine learning to predict the decision to perform surgery in hepatic echinococcosis.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Cystic echinococcosis (CE) is a significant public health issue, primarily affecting the liver. While several management strategies exist, there is a lack of predictive tools to guide surgical decisions for hepatic CE. This study aimed to...

Development and validation of machine learning models for predicting venous thromboembolism in colorectal cancer patients: A cohort study in China.

International journal of medical informatics
BACKGROUND: With advancements in healthcare, traditional VTE risk assessment tools are increasingly insufficient to meet the demands of high-quality care, underscoring the need for innovative and specialized assessment methods.

Artificial intelligence in risk prediction and diagnosis of vertebral fractures.

Scientific reports
With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. A...

Predicting Early recurrence of atrial fibrilation post-catheter ablation using machine learning techniques.

BMC cardiovascular disorders
BACKGROUND: Catheter ablation is a common treatment for atrial fibrillation (AF), but recurrence rates remain variable. Predicting the success of catheter ablation is crucial for patient selection and management. This research seeks to create a machi...

Evaluation of a machine learning-based metabolic marker for coronary artery disease in the UK Biobank.

Atherosclerosis
BACKGROUND AND AIMS: An in silico quantitative score of coronary artery disease (ISCAD), built using machine learning and clinical data from electronic health records, has been shown to result in gradations of risk of subclinical atherosclerosis, cor...

Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using machine learning.

European journal of heart failure
AIMS: Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), leading to increased symptom burden and risk of thromboembolism. The HCM-AF score was developed to predict new-onset AF in p...

Predicting maternal risk level using machine learning models.

BMC pregnancy and childbirth
BACKGROUND: Maternal morbidity and mortality remain critical health concerns globally. As a result, reducing the maternal mortality ratio (MMR) is part of goal 3 in the global sustainable development goals (SDGs), and previously, it was an important ...

Use of Hearing Aids Embedded with Inertial Sensors and Artificial Intelligence to Identify Patients at Risk for Falling.

Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
OBJECTIVE: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.