Prompt personal identification is required during disasters that can result in many casualties. To rapidly estimate sex based on skull structure, this study applied deep learning using two-dimensional silhouette images, obtained from head postmortem ...
Modeling and manufacturing of personalized cranial implants are important research areas that may decrease the waiting time for patients suffering from cranial damage. The modeling of personalized implants may be partially automated by the use of dee...
AJNR. American journal of neuroradiology
Sep 9, 2024
BACKGROUND AND PURPOSE: CT imaging exposes patients to ionizing radiation. MR imaging is radiation free but previously has not been able to produce diagnostic-quality images of bone on a timeline suitable for clinical use. We developed automated moti...
This project aimed to develop an artificial intelligence program tailored for cephalometric images. The program employs a convolutional neural network with 6 convolutional layers and 2 affine layers. It identifies 18 key points on the skull to comput...
PURPOSE: Ultrashort echo time (UTE) MRI can be a radiation-free alternative to CT for craniofacial imaging of pediatric patients. However, unlike CT, bone-specific MR imaging is limited by long scan times, relatively low spatial resolution, and a tim...
In this paper, we investigate the effectiveness of shape completion neural networks as clinical aids in maxillofacial surgery planning. We present a pipeline to apply shape completion networks to automatically reconstruct complete eumorphic 3D meshes...
Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator's expertise, as automation faces challenges such as low tissu...
This study constructed deep learning models using plain skull radiograph images to predict the accurate postnatal age of infants under 12 months. Utilizing the results of the trained deep learning models, it aimed to evaluate the feasibility of emplo...
This work proposes a functional data analysis approach for morphometrics in classifying three shrew species (S. murinus, C. monticola, and C. malayana) from Peninsular Malaysia. Functional data geometric morphometrics (FDGM) for 2D landmark data is i...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.