AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Solitary Pulmonary Nodule

Showing 41 to 50 of 201 articles

Clear Filters

Differentiation of granulomatous nodules with lobulation and spiculation signs from solid lung adenocarcinomas using a CT deep learning model.

BMC cancer
BACKGROUND: The diagnosis of solitary pulmonary nodules has always been a difficult and important point in clinical research, especially granulomatous nodules (GNs) with lobulation and spiculation signs, which are easily misdiagnosed as malignant tum...

Machine Learning for Early Discrimination Between Lung Cancer and Benign Nodules Using Routine Clinical and Laboratory Data.

Annals of surgical oncology
BACKGROUND: Lung cancer poses a global health threat necessitating early detection and precise staging for improved patient outcomes. This study focuses on developing and validating a machine learning-based risk model for early lung cancer screening ...

Better performance of deep learning pulmonary nodule detection using chest radiography with pixel level labels in reference to computed tomography: data quality matters.

Scientific reports
Labeling errors can significantly impact the performance of deep learning models used for screening chest radiographs. The deep learning model for detecting pulmonary nodules is particularly vulnerable to such errors, mainly because normal chest radi...

Incidental pulmonary nodules: Natural language processing analysis of radiology reports.

Respiratory medicine and research
BACKGROUND: Pulmonary nodules are a common incidental finding on chest Computed Tomography scans (CT), most of the time outside of lung cancer screening (LCS). We aimed to evaluate the number of incidental pulmonary nodules (IPN) found in 1 year in o...

Assessment of Follow-Up for Pulmonary Nodules from Radiology Reports with Natural Language Processing.

Studies in health technology and informatics
Radiology reports are an essential communication method for ensuring smooth workflow in healthcare. However, many of these reports are described in free text, and findings documented by radiologists may not be adequately addressed. In this study, foc...

Clinical application of convolutional neural network lung nodule detection software: An Australian quaternary hospital experience.

Journal of medical imaging and radiation oncology
INTRODUCTION: Early-stage lung cancer diagnosis through detection of nodules on computed tomography (CT) remains integral to patient survivorship, promoting national screening programmes and diagnostic tools using artificial intelligence (AI) convolu...

Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT.

Journal of computer assisted tomography
OBJECTIVE: The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterativ...

Deep Learning-Based Reconstruction Algorithm With Lung Enhancement Filter for Chest CT: Effect on Image Quality and Ground Glass Nodule Sharpness.

Korean journal of radiology
OBJECTIVE: To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone.