AIMC Topic: Solitary Pulmonary Nodule

Clear Filters Showing 41 to 50 of 213 articles

Pulmonary nodule visualization and evaluation of AI-based detection at various ultra-low-dose levels using photon-counting detector CT.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Radiation dose should be as low as reasonably achievable. With the invention of photon-counting detector computed tomography (PCD-CT), the radiation dose may be considerably reduced.

Combining Multistaged Filters and Modified Segmentation Network for Improving Lung Nodules Classification.

IEEE journal of biomedical and health informatics
Advancements in computational technology have led to a shift towards automated detection processes in lung cancer screening, particularly through nodule segmentation techniques. These techniques employ thresholding to distinguish between soft and fir...

Incidental pulmonary nodules: Natural language processing analysis of radiology reports.

Respiratory medicine and research
BACKGROUND: Pulmonary nodules are a common incidental finding on chest Computed Tomography scans (CT), most of the time outside of lung cancer screening (LCS). We aimed to evaluate the number of incidental pulmonary nodules (IPN) found in 1 year in o...

Clinical application of convolutional neural network lung nodule detection software: An Australian quaternary hospital experience.

Journal of medical imaging and radiation oncology
INTRODUCTION: Early-stage lung cancer diagnosis through detection of nodules on computed tomography (CT) remains integral to patient survivorship, promoting national screening programmes and diagnostic tools using artificial intelligence (AI) convolu...

Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT.

Journal of computer assisted tomography
OBJECTIVE: The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterativ...

Differentiation of granulomatous nodules with lobulation and spiculation signs from solid lung adenocarcinomas using a CT deep learning model.

BMC cancer
BACKGROUND: The diagnosis of solitary pulmonary nodules has always been a difficult and important point in clinical research, especially granulomatous nodules (GNs) with lobulation and spiculation signs, which are easily misdiagnosed as malignant tum...

Machine Learning for Early Discrimination Between Lung Cancer and Benign Nodules Using Routine Clinical and Laboratory Data.

Annals of surgical oncology
BACKGROUND: Lung cancer poses a global health threat necessitating early detection and precise staging for improved patient outcomes. This study focuses on developing and validating a machine learning-based risk model for early lung cancer screening ...

Deep learning in pulmonary nodule detection and segmentation: a systematic review.

European radiology
OBJECTIVES: The accurate detection and precise segmentation of lung nodules on computed tomography are key prerequisites for early diagnosis and appropriate treatment of lung cancer. This study was designed to compare detection and segmentation metho...

Better performance of deep learning pulmonary nodule detection using chest radiography with pixel level labels in reference to computed tomography: data quality matters.

Scientific reports
Labeling errors can significantly impact the performance of deep learning models used for screening chest radiographs. The deep learning model for detecting pulmonary nodules is particularly vulnerable to such errors, mainly because normal chest radi...