AIMC Topic: Solitary Pulmonary Nodule

Clear Filters Showing 51 to 60 of 213 articles

Artificial intelligence-based graded training of pulmonary nodules for junior radiology residents and medical imaging students.

BMC medical education
BACKGROUND: To evaluate the efficiency of artificial intelligence (AI)-assisted diagnosis system in the pulmonary nodule detection and diagnosis training of junior radiology residents and medical imaging students.

A multiscale 3D network for lung nodule detection using flexible nodule modeling.

Medical physics
BACKGROUND: Lung cancer is the most common type of cancer. Detection of lung cancer at an early stage can reduce mortality rates. Pulmonary nodules may represent early cancer and can be identified through computed tomography (CT) scans. Malignant ris...

Artificial Intelligence: Can It Save Lives, Hospitals, and Lung Screening?

The Annals of thoracic surgery
BACKGROUND: Early detection is essential in lung cancer survival. Lung screening or incidental detection on unrelated imaging holds the most promise for early detection. With the large volume of imaging performed today, management of incidental pulmo...

Deep Learning Models for Predicting Malignancy Risk in CT-Detected Pulmonary Nodules: A Systematic Review and Meta-analysis.

Lung
BACKGROUND: There has been growing interest in using artificial intelligence/deep learning (DL) to help diagnose prevalent diseases earlier. In this study we sought to survey the landscape of externally validated DL-based computer-aided diagnostic (C...

Effect of emphysema on AI software and human reader performance in lung nodule detection from low-dose chest CT.

European radiology experimental
BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR).

Attention pyramid pooling network for artificial diagnosis on pulmonary nodules.

PloS one
The development of automated tools using advanced technologies like deep learning holds great promise for improving the accuracy of lung nodule classification in computed tomography (CT) imaging, ultimately reducing lung cancer mortality rates. Howev...

Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduc...

Development and external validation of a multimodal integrated feature neural network (MIFNN) for the diagnosis of malignancy in small pulmonary nodules (≤10 mm).

Biomedical physics & engineering express
. Current lung cancer screening protocols primarily evaluate pulmonary nodules, yet often neglect the malignancy risk associated with small nodules (≤10 mm). This study endeavors to optimize the management of pulmonary nodules in this population by d...