BACKGROUND: Vertebral fracture assessment (VFA) images are acquired in dual-energy (DE) or single-energy (SE) scan modes. Automated identification of vertebral compression fractures, from VFA images acquired using GE Healthcare scanners in DE mode, h...
BACKGROUND: Identification of vertebral fractures (VFs) is critical for effective secondary fracture prevention owing to their association with the increasing risks of future fractures. Plain abdominal frontal radiographs (PARs) are a common investig...
Vertebral fractures (VFs) cause serious problems, such as substantial functional loss and a high mortality rate, and a delayed diagnosis may further worsen the prognosis. Plain thoracolumbar radiography (PTLR) is an essential method for the evaluatio...
Background Detection of vertebral fractures (VFs) aids in management of osteoporosis and targeting of fracture prevention therapies. Purpose To determine whether convolutional neural networks (CNNs) can be trained to identify VFs at VF assessment (VF...
Precise segmentation and anatomical identification of the vertebrae provides the basis for automatic analysis of the spine, such as detection of vertebral compression fractures or other abnormalities. Most dedicated spine CT and MR scans as well as s...
PURPOSE: To evaluate the diagnostic performance of bone texture analysis (TA) combined with machine learning (ML) algorithms in standard CT scans to identify patients with vertebrae at risk for insufficiency fractures.
OBJECTIVEIntravertebral augmentation (IVA) is a reliable minimally invasive technique for treating Magerl type A vertebral body fractures. However, poor correction of kyphotic angulation, the risk of cement leakage, and significant exposure to radiat...
Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. How...
Journal of neurointerventional surgery
Mar 5, 2014
OBJECTIVE: To report our experience using C-arm cone beam CT (C-arm CBCT) combined with the new remote operated positioning and guidance system, iSYS1, for needle guidance during spinal interventions.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.