AIMC Topic: Thyroid Nodule

Clear Filters Showing 1 to 10 of 148 articles

The value of machine learning based on spectral CT quantitative parameters in the distinguishing benign from malignant thyroid micro-nodules.

BMC cancer
BACKGROUND AND AIMS: More cases of thyroid micro-nodules have been diagnosed annually in recent years because of advancements in diagnostic technologies and increased public health awareness. To explore the application value of various machine learni...

A Deep Learning-Based Artificial Intelligence Model Assisting Thyroid Nodule Diagnosis and Management: Pilot Results for Evaluating Thyroid Malignancy in Pediatric Cohorts.

Thyroid : official journal of the American Thyroid Association
Artificial intelligence (AI) models have shown promise in predicting malignant thyroid nodules in adults; however, research on deep learning (DL) for pediatric cases is limited. We evaluated the applicability of a DL-based model for assessing thyroi...

Application research of artificial intelligence software in the analysis of thyroid nodule ultrasound image characteristics.

PloS one
Thyroid nodule, as a common clinical endocrine disease, has become increasingly prevalent worldwide. Ultrasound, as the premier method of thyroid imaging, plays an important role in accurately diagnosing and managing thyroid nodules. However, there i...

Machine learning model for differentiating malignant from benign thyroid nodules based on the thyroid function data.

BMJ open
OBJECTIVES: To develop and validate a machine learning (ML) model to differentiate malignant from benign thyroid nodules (TNs) based on the routine data and provide diagnostic assistance for medical professionals.

Beyond genomics: artificial intelligence-powered diagnostics for indeterminate thyroid nodules-a systematic review and meta-analysis.

Frontiers in endocrinology
INTRODUCTION: In recent years, artificial intelligence (AI) tools have become widely studied for thyroid ultrasonography (USG) classification. The real-world applicability of these developed tools as pre-operative diagnostic aids is limited due to mo...

Combining Ultrasound Imaging and Molecular Testing in a Multimodal Deep Learning Model for Risk Stratification of Indeterminate Thyroid Nodules.

Thyroid : official journal of the American Thyroid Association
Indeterminate cytology (Bethesda III and IV) represents 15-30% of biopsied thyroid nodules and require additional diagnostic testing. Molecular testing (MT) is a commonly used diagnostic tool that evaluatesmalignancy risk through next generation seq...

Predicting the efficacy of microwave ablation of benign thyroid nodules from ultrasound images using deep convolutional neural networks.

BMC medical informatics and decision making
BACKGROUND: Thyroid nodules are frequent in clinical settings, and their diagnosis in adults is growing, with some persons experiencing symptoms. Ultrasound-guided thermal ablation can shrink nodules and alleviate discomfort. Because the degree and r...

Thyroid nodule classification in ultrasound imaging using deep transfer learning.

BMC cancer
BACKGROUND: The accurate diagnosis of thyroid nodules represents a critical and frequently encountered challenge in clinical practice, necessitating enhanced precision in diagnostic methodologies. In this study, we investigate the predictive efficacy...

ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning.

Scientific reports
Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort...

Diagnostic value of deep learning of multimodal imaging of thyroid for TI-RADS category 3-5 classification.

Endocrine
BACKGROUND: Thyroid nodules classified within the Thyroid Imaging Reporting and Data Systems (TI-RADS) category 3-5 are typically regarded as having varying degrees of malignancy risk, with the risk increasing from TI-RADS 3 to TI-RADS 5. While some ...