AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Autoantibodies

Showing 1 to 10 of 34 articles

Clear Filters

ESCCPred: a machine learning model for diagnostic prediction of early esophageal squamous cell carcinoma using autoantibody profiles.

British journal of cancer
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection.

Machine learning characterization of a rare neurologic disease via electronic health records: a proof-of-principle study on stiff person syndrome.

BMC neurology
BACKGROUND: Despite the frequent diagnostic delays of rare neurologic diseases (RND), it remains difficult to study RNDs and their comorbidities due to their rarity and hence the statistical underpowering. Affecting one to two in a million annually, ...

Analysis of the relationships between interferon-stimulated genes and anti-SSA/Ro 60 antibodies in primary Sjögren's syndrome patients via multiomics and machine learning methods.

International immunopharmacology
BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease characterized by lymphocyte infiltration of the exocrine glands. Interferon-stimulated genes (ISGs) are often upregulated in patients with pSS, and anti-SSA/Ro 60 a...

Machine learning identifies cytokine signatures of disease severity and autoantibody profiles in systemic lupus erythematosus - a pilot study.

Scientific reports
Disrupted cytokine networks and autoantibodies play an important role in the pathogenesis of systemic lupus erythematosus. However, conflicting reports and non-reproducibility have hindered progress regarding the translational potential of cytokines ...

A machine learning tool for early identification of celiac disease autoimmunity.

Scientific reports
Identifying which patients should undergo serologic screening for celiac disease (CD) may help diagnose patients who otherwise often experience diagnostic delays or remain undiagnosed. Using anonymized outpatient data from the electronic medical reco...

Use and Comparison of Machine Learning Techniques to Discern the Protein Patterns of Autoantibodies Present in Women with and without Breast Pathology.

Journal of proteome research
Breast cancer (BC) has become a global health problem, ranking first in incidence and fifth in mortality in women around the world. Although there are some diagnostic methods for the disease, these are not sufficiently effective and are invasive. In ...

Predicting autoimmune thyroiditis in primary Sjogren's syndrome patients using a random forest classifier: a retrospective study.

Arthritis research & therapy
BACKGROUND: Primary Sjogren's syndrome (pSS) and autoimmune thyroiditis (AIT) share overlapping genetic and immunological profiles. This retrospective study evaluates the efficacy of machine learning algorithms, with a focus on the Random Forest Clas...

Detection of antibodies in suspected autoimmune encephalitis diseases using machine learning.

Scientific reports
In our study, we aim to predict the antibody serostatus of patients with suspected autoimmune encephalitis (AE) using machine learning based on pre-contrast T2-weighted MR images acquired at symptom onset. A confirmation of seropositivity is of great...

Machine learning technique-based four-autoantibody test for early detection of esophageal squamous cell carcinoma: a multicenter, retrospective study with a nested case-control study.

BMC medicine
BACKGROUND: Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high di...

Machine learning model for differentiating malignant from benign thyroid nodules based on the thyroid function data.

BMJ open
OBJECTIVES: To develop and validate a machine learning (ML) model to differentiate malignant from benign thyroid nodules (TNs) based on the routine data and provide diagnostic assistance for medical professionals.