AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Visual Acuity

Showing 61 to 70 of 154 articles

Clear Filters

Efficacy and accuracy of artificial intelligence to overlay multimodal images from different optical instruments in patients with retinitis pigmentosa.

Clinical & experimental ophthalmology
BACKGROUND: Retinitis pigmentosa (RP) represents a group of progressive, genetically heterogenous blinding diseases. Recently, relationships between measures of retinal function and structure are needed to help identify outcome measures or biomarkers...

Deep Learning Using Preoperative AS-OCT Predicts Graft Detachment in DMEK.

Translational vision science & technology
PURPOSE: To evaluate a novel deep learning algorithm to distinguish between eyes that may or may not have a graft detachment based on pre-Descemet membrane endothelial keratoplasty (DMEK) anterior segment optical coherence tomography (AS-OCT) images.

An AI model to estimate visual acuity based solely on cross-sectional OCT imaging of various diseases.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: To develop an artificial intelligence (AI) model for estimating best-corrected visual acuity (BCVA) using horizontal and vertical optical coherence tomography (OCT) scans of various retinal diseases and examine factors associated with its ac...

Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (London, England)
PURPOSE: To evaluate the reliability of automated fluid detection in identifying retinal fluid activity in OCT scans of patients treated with anti-VEGF therapy for neovascular age-related macular degeneration by correlating human expert and automated...

Deep Learning Algorithm Detects Presence of Disorganization of Retinal Inner Layers (DRIL)-An Early Imaging Biomarker in Diabetic Retinopathy.

Translational vision science & technology
PURPOSE: To develop and train a deep learning-based algorithm for detecting disorganization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen a cohort of patients with diabetic retinopathy (DR).

Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning.

Ophthalmology. Retina
PURPOSE: To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatments Tria...

Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration.

Acta ophthalmologica
PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.

Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability.

Ophthalmology. Glaucoma
PURPOSE: Develop and evaluate the performance of a deep learning model (DLM) that forecasts eyes with low future visual field (VF) variability, and study the impact of using this DLM on sample size requirements for neuroprotective trials.