AI Medical Compendium Journal:
BMC neurology

Showing 11 to 20 of 40 articles

Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights.

BMC neurology
Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale lev...

Prediction of poststroke independent walking using machine learning: a retrospective study.

BMC neurology
BACKGROUND: Accurately predicting the walking independence of stroke patients is important. Our objective was to determine and compare the performance of logistic regression (LR) and three machine learning models (eXtreme Gradient Boosting (XGBoost),...

Machine learning-based predictive model for the development of thrombolysis resistance in patients with acute ischemic stroke.

BMC neurology
BACKGROUND: The objective of this study was to establish a predictive model utilizing machine learning techniques to anticipate the likelihood of thrombolysis resistance (TR) in acute ischaemic stroke (AIS) patients undergoing recombinant tissue plas...

Machine learning characterization of a rare neurologic disease via electronic health records: a proof-of-principle study on stiff person syndrome.

BMC neurology
BACKGROUND: Despite the frequent diagnostic delays of rare neurologic diseases (RND), it remains difficult to study RNDs and their comorbidities due to their rarity and hence the statistical underpowering. Affecting one to two in a million annually, ...

Treatment with robot-assisted gait trainer Walkbot along with physiotherapy vs. isolated physiotherapy in children and adolescents with cerebral palsy. Experimental study.

BMC neurology
BACKGROUND: Improving walking ability is a key objective in the treatment of children and adolescents with cerebral palsy, since it directly affects their activity and participation. In recent years, robotic technology has been implemented in gait tr...

Predicting who has delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage using machine learning approach: a multicenter, retrospective cohort study.

BMC neurology
BACKGROUND: Early prediction of delayed cerebral ischemia (DCI) is critical to improving the prognosis of aneurysmal subarachnoid hemorrhage (aSAH). Machine learning (ML) algorithms can learn from intricate information unbiasedly and facilitate the e...

Utilizing machine learning to facilitate the early diagnosis of posterior circulation stroke.

BMC neurology
BACKGROUND: Posterior Circulation Syndrome (PCS) presents a diagnostic challenge characterized by its variable and nonspecific symptoms. Timely and accurate diagnosis is crucial for improving patient outcomes. This study aims to enhance the early dia...